ZHCS890C May   2012  – September 2025 INA3221

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 基本 ADC 功能
      2. 7.3.2 警报监测
        1. 7.3.2.1 临界警报
          1. 7.3.2.1.1 求和控制功能
        2. 7.3.2.2 警告警报
        3. 7.3.2.3 电源有效警报
        4. 7.3.2.4 时序控制警报
        5. 7.3.2.5 默认设置
      3. 7.3.3 软件复位
    4. 7.4 器件功能模式
      1. 7.4.1 均值计算功能
      2. 7.4.2 多通道监测
        1. 7.4.2.1 通道配置
        2. 7.4.2.2 均值计算和转换时间注意事项
      3. 7.4.3 滤波和输入考虑
    5. 7.5 编程
      1. 7.5.1 总线概述
        1. 7.5.1.1 串行总线地址
        2. 7.5.1.2 串行接口
      2. 7.5.2 对 INA3221 进行写入和读取
        1. 7.5.2.1 高速 I2C 模式
      3. 7.5.3 SMBus 警报响应
    6. 7.6 寄存器映射
      1. 7.6.1 寄存器组摘要
      2. 7.6.2 寄存器说明
        1. 7.6.2.1  配置寄存器(地址 = 00h)[复位 = 7127h]
        2. 7.6.2.2  通道 1 分流电压寄存器(地址 = 01h)[复位 = 00h]
        3. 7.6.2.3  通道 1 总线电压寄存器(地址 = 02h)[复位 = 00h]
        4. 7.6.2.4  通道 2 分流电压寄存器(地址 = 03h)[复位 = 00h]
        5. 7.6.2.5  通道 2 总线电压寄存器(地址 = 04h)[复位 = 00h]
        6. 7.6.2.6  通道 3 分流电压寄存器(地址 = 05h)[复位 = 00h]
        7. 7.6.2.7  通道 3 总线电压寄存器(地址 = 06h)[复位 = 00h]
        8. 7.6.2.8  通道 1 临界警报限值寄存器(地址 = 07h)[复位 = 7FF8h]
        9. 7.6.2.9  警告警报通道 1 限值寄存器(地址 = 08h)[复位 = 7FF8h]
        10. 7.6.2.10 通道 2 临界警报限值寄存器(地址 = 09h)[复位 = 7FF8h]
        11. 7.6.2.11 通道 2 警告警报限值寄存器(地址 = 0Ah)[复位 = 7FF8h]
        12. 7.6.2.12 通道 3 临界警报限值寄存器(地址 = 0Bh)[复位 = 7FF8h]
        13. 7.6.2.13 通道 3 警告警报限值寄存器(地址 = 0Ch)[复位 = 7FF8h]
        14. 7.6.2.14 分流电压总和寄存器(地址 = 0Dh)[复位 = 00h]
        15. 7.6.2.15 分流电压总和限值寄存器(地址 = 0Eh)[复位 = 7FFEh]
        16. 7.6.2.16 屏蔽/使能寄存器(地址 = 0Fh)[复位 = 0002h]
        17. 7.6.2.17 电源有效上限寄存器(地址 = 10h)[复位 = 2710h]
        18. 7.6.2.18 电源有效下限寄存器(地址 = 11h)[复位 = 2328h]
        19. 7.6.2.19 制造商 ID 寄存器(地址 = FEh)[复位 = 5449h]
        20. 7.6.2.20 芯片 ID 寄存器(地址 = FFh)[复位 = 3220]
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
      3. 8.2.3 应用曲线
    3. 8.3 电源相关建议
    4. 8.4 布局
      1. 8.4.1 布局指南
      2. 8.4.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 开发支持
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

滤波和输入考虑

测量电流通常会产生较多噪声,这种噪声难以定义。通过允许在配置寄存器中独立选择转换时间和平均值数量,INA3221 提供了多个滤波选项。转换时间也可针对分流电压和总线电压测量独立设置,从而更加灵活地配置电源总线监测。

内部 ADC 基于一个三角积分 (ΔΣ) 前端,其典型采样率为 500kHz (±30%)。此架构具有良好的固有噪声抑制能力;但是,在采样率谐波或非常接近采样率谐波处发生的瞬变可能会引起问题。这些瞬态信号的频率为 1MHz 或更高;因此,可通过在 INA3221 输入端加入滤波来管理这些信号。高频信号允许在滤波器上使用低阻值串联电阻器,对测量准确度的影响可以忽略不计。通常,仅当瞬态恰好出现在 500kHz (±30%) 采样率且大于 1MHz 的谐波上时,才需要对 INA3221 输入进行滤波。使用尽可能低的串联电阻值(通常为 10Ω 或者更少)和一个陶瓷电容器的滤波器。建议的电容值为 0.1μF 至 1.0μF。图 7-8 展示了在输入端额外添加滤波器的 INA3221

INA3221 带输入滤波的 INA3221图 7-8 带输入滤波的 INA3221

INA3221 输入在输入端可承受 26V 的额定电压。但是,对于 INA3221 输入,过载条件是另外一个考虑因素。例如,大差分输入情况会使分流器负载侧对地短路。如果电源或者储能电容器支持,此类事件会导致分流器上出现满电源电压。请记住,消除对地短路可能导致电感反冲,而电感反冲可能超过 INA3221 的 26V 差分和共模额定值。电感反冲电压应由具有足够储能电容的齐纳类型瞬变吸收器件(通常称为瞬变吸收器)来控制。

对于在分流器的一侧或两侧没有大型储能电解电容器的应用,施加到输入上的电压的过量 dV/dt 可能会导致输入过应力情况。硬物理短路最有可能是导致该事件的原因,尤其是在没有大型电解电容器存在的应用中。之所以出现这个问题,是因为过量的 dV/dt 可能会在提供大电流的系统中激活 INA3221 ESD 保护功能。测试表明,通过添加与每个 INA3221 输入串联的 10Ω 电阻器,可充分保护输入免受此 dV/dt 故障(高达 26V 器件额定值)的影响。