ZHCSEY3D April   2016  – October 2019 DS90UB914A-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions: DS90UB914A-Q1 Deserializer
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 AC Timing Specifications (SCL, SDA) - I2C-Compatible
    7. 7.7 Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C-Compatible
    8. 7.8 Deserializer Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Timing Diagrams and Test Circuits
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Serial Frame Format
      2. 9.3.2  Line Rate Calculations for the DS90UB913A/914A
      3. 9.3.3  Deserializer Multiplexer Input
      4. 9.3.4  Error Detection
      5. 9.3.5  Synchronizing Multiple Cameras
      6. 9.3.6  General-Purpose I/O (GPIO) Descriptions
      7. 9.3.7  LVCMOS VDDIO Option
      8. 9.3.8  EMI Reduction
        1. 9.3.8.1 Deserializer Staggered Output
        2. 9.3.8.2 Spread Spectrum Clock Generation (SSCG) on the Deserializer
      9. 9.3.9  Pixel Clock Edge Select (TRFB / RRFB)
      10. 9.3.10 Power Down
    4. 9.4 Device Functional Modes
      1. 9.4.1 DS90UB913A/914A Operation With External Oscillator as Reference Clock
      2. 9.4.2 DS90UB913A/914A Operation With Pixel Clock From Imager as Reference Clock
      3. 9.4.3 MODE Pin on Deserializer
      4. 9.4.4 Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN) and Output State Select (OSS_SEL)
      5. 9.4.5 Built-In Self Test
      6. 9.4.6 BIST Configuration and Status
      7. 9.4.7 Sample BIST Sequence
    5. 9.5 Programming
      1. 9.5.1 Programmable Controller
      2. 9.5.2 Description of Bidirectional Control Bus and I2C Modes
      3. 9.5.3 I2C Pass-Through
      4. 9.5.4 Slave Clock Stretching
      5. 9.5.5 ID[x] Address Decoder on the Deserializer
      6. 9.5.6 Multiple Device Addressing
    6. 9.6 Register Maps
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Power Over Coax
      2. 10.1.2 Power-Up Requirements and PDB Pin
      3. 10.1.3 AC Coupling
      4. 10.1.4 Transmission Media
      5. 10.1.5 Adaptive Equalizer – Loss Compensation
    2. 10.2 Typical Applications
      1. 10.2.1 Coax Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
      2. 10.2.2 STP Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Interconnect Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 接收文档更新通知
    3. 13.3 社区资源
    4. 13.4 商标
    5. 13.5 静电放电警告
    6. 13.6 Glossary
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout Guidelines

Circuit board layout and stack-up for the Ser/Des devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2-µF to 10-µF range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50-µF to 100-µF range and will smooth low frequency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path.

A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency.

Some devices provide separate power for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the differential lines to prevent coupling from the LVCMOS lines to the differential lines. Closely-coupled differential lines of 100 Ω are typically recommended for differential interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

Information on the WQFN style package is provided in TI Application Note: AN-1187 Leadless Leadframe Package (LLP).