ZHCSQW4 March   2025 TPS7A56

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 典型特性
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1 输出电压设置和调节
      2. 6.3.2 低噪声、超高电源抑制比 (PSRR)
      3. 6.3.3 可编程软启动(NR/SS 引脚)
      4. 6.3.4 精密使能和 UVLO
      5. 6.3.5 电荷泵使能与 BIAS 轨
      6. 6.3.6 电源正常引脚(PG 引脚)
      7. 6.3.7 有源放电
      8. 6.3.8 热关断保护 (TSD)
    4. 6.4 器件功能模式
      1. 6.4.1 正常运行
      2. 6.4.2 压降运行
      3. 6.4.3 禁用
      4. 6.4.4 以电流限制模式运行
  8. 应用和实施
    1. 7.1 应用信息
      1. 7.1.1  精密使能(外部 UVLO)
      2. 7.1.2  欠压锁定 (UVLO) 操作
        1. 7.1.2.1 IN 引脚 UVLO
        2. 7.1.2.2 偏置 UVLO
        3. 7.1.2.3 典型 UVLO 运行
        4. 7.1.2.4 UVLO(IN) 和 UVLO(BIAS) 交互
      3. 7.1.3  压降电压 (VDO)
      4. 7.1.4  输入和输出电容器要求(CIN 和 COUT)
      5. 7.1.5  建议的电容器类型
      6. 7.1.6  软启动、降噪(NR/SS 引脚)和电源正常状态(PG 引脚)
      7. 7.1.7  优化噪声和 PSRR
      8. 7.1.8  可调节运行
      9. 7.1.9  负载瞬态响应
      10. 7.1.10 电荷泵运行情况
      11. 7.1.11 时序控制
      12. 7.1.12 电源正常状态指示功能
      13. 7.1.13 通过并联实现更高输出电流和更低噪声
      14. 7.1.14 功率耗散 (PD)
      15. 7.1.15 估算结温
      16. 7.1.16 TPS7A57EVM-056 散热分析
    2. 7.2 典型应用
      1. 7.2.1 设计要求
      2. 7.2.2 详细设计过程
      3. 7.2.3 应用曲线
    3. 7.3 电源相关建议
    4. 7.4 布局
      1. 7.4.1 布局指南
      2. 7.4.2 布局示例
  9. 器件和文档支持
    1. 8.1 器件支持
      1. 8.1.1 开发支持
      2. 8.1.2 器件命名规则
    2. 8.2 文档支持
      1. 8.2.1 相关文档
    3. 8.3 接收文档更新通知
    4. 8.4 支持资源
    5. 8.5 商标
    6. 8.6 静电放电警告
    7. 8.7 术语表
  10. 修订历史记录
  11. 10机械、封装和可订购信息
    1. 10.1 机械数据

功率耗散 (PD)

实现电路可靠性时需要适当考虑器件功耗、印刷电路板 (PCB) 上的电路位置以及正确的热平面尺寸。确保稳压器周围的 PCB 区域具有少量或没有其他会导致热应力增加的发热器件。

对于一阶近似,稳压器中的功率耗散取决于输入到输出电压差和负载条件。以下公式可计算功率耗散 (PD)。

方程式 10. PD = (VIN – VOUT) × IOUT
注: 通过正确选择系统电压轨,可更大限度地降低功率耗散,从而实现更高的效率。通过适当的选择,可以获得最小的输入到输出电压差。器件的低压降有助于在宽输出电压范围内实现出色效率。

封装的主要热传导路径是通过连接到 PCB 的散热焊盘。将散热焊盘焊接到器件下方的铜焊盘区域。此焊盘区域包含一组镀通孔,可将热量传导到任何内部平面区域或底部覆铜平面。

通过器件的功率耗散决定了器件的结温 (TJ)。功率耗散和结温通常与 PCB 和器件封装组合的 RθJA 以及与 TA 有关。RθJA 是结至环境热阻,TA 是环境空气温度。以下公式描述了这种关系。

方程式 11. TJ = TA = (RθJA × PD)

以下公式重新梳理了此关系以求解输出电流。

方程式 12. IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]

遗憾的是,该热阻 (RθJA) 在很大程度上取决于特定 PCB 设计中内置的散热能力。因此,该热阻会根据总铜面积、铜重量和平面位置而变化。热性能信息 表中记录的 RθJA 由 JEDEC 标准、PCB 和铜扩散面积决定。RθJA 仅用作封装热性能的相对测量值。对于精心设计的热布局,RθJA 实际上是 RTE 封装 RθJCbot 与 PCB 铜产生的热阻的总和。RθJCbot热性能信息 结至外壳(底部)的热阻,如表中所示。