SPRUIW9C October   2021  – March 2024 TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000™ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studio™ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit
    5. 2.5 Trigonometric Math Unit (TMU)
    6. 2.6 VCRC Unit
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Simulate External Reset (SIMRESET.XRS)
      4. 3.4.4  Power-On Reset (POR)
      5. 3.4.5  Brown-Out-Reset (BOR)
      6. 3.4.6  Debugger Reset (SYSRS)
      7. 3.4.7  Simulate CPU Reset (SIMRESET.CPU1RS)
      8. 3.4.8  Watchdog Reset (WDRS)
      9. 3.4.9  Hardware BIST Reset (HWBISTRS)
      10. 3.4.10 NMI Watchdog Reset (NMIWDRS)
      11. 3.4.11 DCSM Safe Code Copy Reset (SCCRESET)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
        1. 3.5.5.1 PIE Interrupt Priority
          1. 3.5.5.1.1 Channel Priority
          2. 3.5.5.1.2 Group Priority
      6. 3.5.6 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection
        2. 3.6.3.2 RAM Uncorrectable Error
        3. 3.6.3.3 Flash Uncorrectable ECC Error
        4. 3.6.3.4 CPU HWBIST Error
        5. 3.6.3.5 Software-Forced Error
      4. 3.6.4 CRC Fail
      5. 3.6.5 ERAD NMI
      6. 3.6.6 Illegal Instruction Trap (ITRAP)
      7. 3.6.7 Error Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.7.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.7.1.3 Auxiliary Clock Input (AUXCLKIN)
        4. 3.7.1.4 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK and PERx.SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CAN Bit Clock
        6. 3.7.3.6 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
        1. 3.7.7.1 X1/X2 Precondition Circuit
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low-Power Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
      5. 3.10.5 Flash Power-down Considerations
    11. 3.11 Memory Controller Module
      1. 3.11.1  Dedicated RAM (Mx RAM)
      2. 3.11.2  Local Shared RAM (LSx RAM)
      3. 3.11.3  Global Shared RAM (GSx RAM)
      4. 3.11.4  CLA-CPU Message RAM
      5. 3.11.5  CLA-DMA Message RAM
      6. 3.11.6  Access Arbitration
      7. 3.11.7  Access Protection
        1. 3.11.7.1 CPU Fetch Protection
        2. 3.11.7.2 CPU Write Protection
        3. 3.11.7.3 CPU Read Protection
        4. 3.11.7.4 CLA Fetch Protection
        5. 3.11.7.5 CLA Read Protection
        6. 3.11.7.6 CLA Write Protection
        7. 3.11.7.7 HIC Write Protection
        8. 3.11.7.8 DMA Write Protection
      8. 3.11.8  Memory Error Detection and Correction, and Error Handling
        1. 3.11.8.1 Error Detection and Correction
        2. 3.11.8.2 Error Handling
      9. 3.11.9  Application Test Hooks for Error Detection and Correction
      10. 3.11.10 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 Live Firmware Update
      1. 3.13.1 LFU Background
      2. 3.13.2 LFU Switchover Steps
      3. 3.13.3 Device Features Supporting LFU
        1. 3.13.3.1 Multi-Bank Flash
        2. 3.13.3.2 PIE Vector Table Swap
        3. 3.13.3.3 LS0/LS1 RAM Memory Swap
          1. 3.13.3.3.1 Applicability to CLA LFU
      4. 3.13.4 LFU Switchover
      5. 3.13.5 LFU Resources
    14. 3.14 System Control Register Configuration Restrictions
    15. 3.15 Software
      1. 3.15.1 INTERRUPT Examples
        1. 3.15.1.1 External Interrupts (ExternalInterrupt)
        2. 3.15.1.2 Multiple interrupt handling of I2C, SCI & SPI Digital Loopback
        3. 3.15.1.3 CPU Timer Interrupt Software Prioritization
        4. 3.15.1.4 EPWM Real-Time Interrupt
      2. 3.15.2 SYSCTL Examples
        1. 3.15.2.1 Missing clock detection (MCD)
        2. 3.15.2.2 XCLKOUT (External Clock Output) Configuration
      3. 3.15.3 TIMER Examples
        1. 3.15.3.1 CPU Timers
        2. 3.15.3.2 CPU Timers
      4. 3.15.4 LPM Examples
        1. 3.15.4.1 Low Power Modes: Device Idle Mode and Wakeup using GPIO
        2. 3.15.4.2 Low Power Modes: Device Idle Mode and Wakeup using Watchdog
        3. 3.15.4.3 Low Power Modes: Device Standby Mode and Wakeup using GPIO
        4. 3.15.4.4 Low Power Modes: Device Standby Mode and Wakeup using Watchdog
        5. 3.15.4.5 Low Power Modes: Halt Mode and Wakeup using GPIO
        6. 3.15.4.6 Low Power Modes: Halt Mode and Wakeup
      5. 3.15.5 MEMCFG Examples
        1. 3.15.5.1 Correctable & Uncorrectable Memory Error Handling
      6. 3.15.6 WATCHDOG Examples
        1. 3.15.6.1 Watchdog
    16. 3.16 System Control Registers
      1. 3.16.1  SYSCTRL Base Address Table
      2. 3.16.2  ACCESS_PROTECTION_REGS Registers
      3. 3.16.3  CLK_CFG_REGS Registers
      4. 3.16.4  CPU_SYS_REGS Registers
      5. 3.16.5  CPUTIMER_REGS Registers
      6. 3.16.6  DEV_CFG_REGS Registers
      7. 3.16.7  DMA_CLA_SRC_SEL_REGS Registers
      8. 3.16.8  MEM_CFG_REGS Registers
      9. 3.16.9  MEMORY_ERROR_REGS Registers
      10. 3.16.10 NMI_INTRUPT_REGS Registers
      11. 3.16.11 PERIPH_AC_REGS Registers
      12. 3.16.12 PIE_CTRL_REGS Registers
      13. 3.16.13 SYNC_SOC_REGS Registers
      14. 3.16.14 SYS_STATUS_REGS Registers
      15. 3.16.15 TEST_ERROR_REGS Registers
      16. 3.16.16 UID_REGS Registers
      17. 3.16.17 WD_REGS Registers
      18. 3.16.18 XINT_REGS Registers
      19. 3.16.19 LFU_REGS Registers
      20. 3.16.20 Register to Driverlib Function Mapping
        1. 3.16.20.1 CPUTIMER Registers to Driverlib Functions
        2. 3.16.20.2 DCSM Registers to Driverlib Functions
        3. 3.16.20.3 MEMCFG Registers to Driverlib Functions
        4. 3.16.20.4 NMI Registers to Driverlib Functions
        5. 3.16.20.5 PIE Registers to Driverlib Functions
        6. 3.16.20.6 SYSCTL Registers to Driverlib Functions
        7. 3.16.20.7 WWD Registers to Driverlib Functions
        8. 3.16.20.8 XINT Registers to Driverlib Functions
  6. ROM Code and Peripheral Booting
    1. 4.1  Introduction
    2. 4.2  ROM Related Collateral
    3. 4.3  Device Boot Sequence
    4. 4.4  Device Boot Modes
      1. 4.4.1 Default Boot Modes
      2. 4.4.2 Custom Boot Modes
    5. 4.5  Device Boot Configurations
      1. 4.5.1 Configuring Boot Mode Pins
      2. 4.5.2 Configuring Boot Mode Table Options
      3. 4.5.3 Boot Mode Example Use Cases
        1. 4.5.3.1 Zero Boot Mode Select Pins
        2. 4.5.3.2 One Boot Mode Select Pin
        3. 4.5.3.3 Three Boot Mode Select Pins
    6. 4.6  Device Boot Flow Diagrams
      1. 4.6.1 Boot Flow
      2. 4.6.2 Emulation Boot Flow
      3. 4.6.3 Standalone Boot Flow
    7. 4.7  Device Reset and Exception Handling
      1. 4.7.1 Reset Causes and Handling
      2. 4.7.2 Exceptions and Interrupts Handling
    8. 4.8  Boot ROM Description
      1. 4.8.1  Boot ROM Configuration Registers
        1. 4.8.1.1 GPREG2 Usage and MPOST Configuration
      2. 4.8.2  Entry Points
      3. 4.8.3  Wait Points
      4. 4.8.4  Secure Flash Boot
        1. 4.8.4.1 Secure Flash CPU1 Linker File Example
      5. 4.8.5  Firmware Update (FWU) Flash Boot
      6. 4.8.6  Memory Maps
        1. 4.8.6.1 Boot ROM Memory Maps
        2. 4.8.6.2 CLA Data ROM Memory Maps
        3. 4.8.6.3 Reserved RAM Memory Maps
      7. 4.8.7  ROM Tables
      8. 4.8.8  Boot Modes and Loaders
        1. 4.8.8.1 Boot Modes
          1. 4.8.8.1.1 Flash Boot
          2. 4.8.8.1.2 RAM Boot
          3. 4.8.8.1.3 Wait Boot
        2. 4.8.8.2 Bootloaders
          1. 4.8.8.2.1 SCI Boot Mode
          2. 4.8.8.2.2 SPI Boot Mode
          3. 4.8.8.2.3 I2C Boot Mode
          4. 4.8.8.2.4 Parallel Boot Mode
          5. 4.8.8.2.5 CAN Boot Mode
          6. 4.8.8.2.6 CAN-FD Boot Mode
      9. 4.8.9  GPIO Assignments
      10. 4.8.10 Secure ROM Function APIs
      11. 4.8.11 Clock Initializations
      12. 4.8.12 Boot Status Information
        1. 4.8.12.1 Booting Status
        2. 4.8.12.2 Boot Mode and MPOST (Memory Power On Self-Test) Status
      13. 4.8.13 ROM Version
    9. 4.9  Application Notes for Using the Bootloaders
      1. 4.9.1 Bootloader Data Stream Structure
        1. 4.9.1.1 Data Stream Structure 8-bit
      2. 4.9.2 The C2000 Hex Utility
        1. 4.9.2.1 HEX2000.exe Command Syntax
    10. 4.10 Software
      1. 4.10.1 BOOT Examples
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Password Lock
      5. 5.2.5 JTAGLOCK
      6. 5.2.6 Link Pointer and Zone Select
      7. 5.2.7 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Module Controller (FMC)
    4. 6.4  Flash and OTP Memory Power-Down Modes and Wakeup
    5. 6.5  Active Grace Period
    6. 6.6  Flash and OTP Memory Performance
    7. 6.7  Flash Read Interface
      1. 6.7.1 C28x-FMC Flash Read Interface
        1. 6.7.1.1 Standard Read Mode
        2. 6.7.1.2 Prefetch Mode
          1. 6.7.1.2.1 Data Cache
    8. 6.8  Flash Erase and Program
      1. 6.8.1 Erase
      2. 6.8.2 Program
      3. 6.8.3 Verify
    9. 6.9  Error Correction Code (ECC) Protection
      1. 6.9.1 Single-Bit Data Error
      2. 6.9.2 Uncorrectable Error
      3. 6.9.3 SECDED Logic Correctness Check
    10. 6.10 Reserved Locations Within Flash and OTP Memory
    11. 6.11 Migrating an Application from RAM to Flash
    12. 6.12 Procedure to Change the Flash Control Registers
    13. 6.13 Software
      1. 6.13.1 FLASH Examples
        1. 6.13.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
        2. 6.13.1.2 Flash ECC Test Mode
        3. 6.13.1.3 Boot Source Code
        4. 6.13.1.4 Erase Source Code
        5. 6.13.1.5 Live DFU Command Functionality
        6. 6.13.1.6 Verify Source Code
        7. 6.13.1.7 SCI Boot Mode Routines
        8. 6.13.1.8 Flash Programming Solution using SCI
    14. 6.14 Flash Registers
      1. 6.14.1 FLASH Base Address Table
      2. 6.14.2 FLASH_CTRL_REGS Registers
      3. 6.14.3 FLASH_ECC_REGS Registers
      4. 6.14.4 FLASH Registers to Driverlib Functions
  9. Control Law Accelerator (CLA)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 CLA Related Collateral
      3. 7.1.3 Block Diagram
    2. 7.2 CLA Interface
      1. 7.2.1 CLA Memory
      2. 7.2.2 CLA Memory Bus
      3. 7.2.3 Shared Peripherals and EALLOW Protection
      4. 7.2.4 CLA Tasks and Interrupt Vectors
    3. 7.3 CLA and CPU Arbitration
      1. 7.3.1 CLA Message RAM
      2. 7.3.2 Peripheral Registers (ePWM, HRPWM, Comparator)
    4. 7.4 CLA Configuration and Debug
      1. 7.4.1 Building a CLA Application
      2. 7.4.2 Typical CLA Initialization Sequence
      3. 7.4.3 Debugging CLA Code
        1. 7.4.3.1 Software Breakpoint Support (MDEBUGSTOP1)
        2. 7.4.3.2 Breakpoint Support (MDEBUGSTOP)
      4. 7.4.4 CLA Illegal Opcode Behavior
      5. 7.4.5 Resetting the CLA
    5. 7.5 Pipeline
      1. 7.5.1 Pipeline Overview
      2. 7.5.2 CLA Pipeline Alignment
        1. 7.5.2.1 Code Fragment For MBCNDD, MCCNDD, or MRCNDD
        2.       362
        3. 7.5.2.2 Code Fragment for Loading MAR0 or MAR1
        4.       364
        5. 7.5.2.3 ADC Early Interrupt to CLA Response
      3. 7.5.3 Parallel Instructions
        1. 7.5.3.1 Math Operation with Parallel Load
        2. 7.5.3.2 Multiply with Parallel Add
      4. 7.5.4 CLA Task Execution Latency
    6. 7.6 Software
      1. 7.6.1 CLA Examples
        1. 7.6.1.1 CLA arcsine(x) using a lookup table (cla_asin_cpu01)
        2. 7.6.1.2 CLA arctangent(x) using a lookup table (cla_atan_cpu01)
        3. 7.6.1.3 CLA background nesting task
        4. 7.6.1.4 Controlling PWM output using CLA
        5. 7.6.1.5 Just-in-time ADC sampling with CLA
        6. 7.6.1.6 Optimal offloading of control algorithms to CLA
        7. 7.6.1.7 Handling shared resources across C28x and CLA
    7. 7.7 Instruction Set
      1. 7.7.1 Instruction Descriptions
      2. 7.7.2 Addressing Modes and Encoding
      3. 7.7.3 Instructions
        1.       MABSF32 MRa, MRb
        2.       MADD32 MRa, MRb, MRc
        3.       MADDF32 MRa, #16FHi, MRb
        4.       MADDF32 MRa, MRb, #16FHi
        5.       MADDF32 MRa, MRb, MRc
        6.       MADDF32 MRd, MRe, MRf||MMOV32 mem32, MRa
        7.       MADDF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        8.       MAND32 MRa, MRb, MRc
        9.       MASR32 MRa, #SHIFT
        10.       MBCNDD 16BitDest {, CNDF}
        11.       MCCNDD 16BitDest {, CNDF}
        12.       MCMP32 MRa, MRb
        13.       MCMPF32 MRa, MRb
        14.       MCMPF32 MRa, #16FHi
        15.       MDEBUGSTOP
        16.       MEALLOW
        17.       MEDIS
        18.       MEINVF32 MRa, MRb
        19.       MEISQRTF32 MRa, MRb
        20.       MF32TOI16 MRa, MRb
        21.       MF32TOI16R MRa, MRb
        22.       MF32TOI32 MRa, MRb
        23.       MF32TOUI16 MRa, MRb
        24.       MF32TOUI16R MRa, MRb
        25.       MF32TOUI32 MRa, MRb
        26.       MFRACF32 MRa, MRb
        27.       MI16TOF32 MRa, MRb
        28.       MI16TOF32 MRa, mem16
        29.       MI32TOF32 MRa, mem32
        30.       MI32TOF32 MRa, MRb
        31.       MLSL32 MRa, #SHIFT
        32.       MLSR32 MRa, #SHIFT
        33.       MMACF32 MR3, MR2, MRd, MRe, MRf ||MMOV32 MRa, mem32
        34.       MMAXF32 MRa, MRb
        35.       MMAXF32 MRa, #16FHi
        36.       MMINF32 MRa, MRb
        37.       MMINF32 MRa, #16FHi
        38.       MMOV16 MARx, MRa, #16I
        39.       MMOV16 MARx, mem16
        40.       MMOV16 mem16, MARx
        41.       MMOV16 mem16, MRa
        42.       MMOV32 mem32, MRa
        43.       MMOV32 mem32, MSTF
        44.       MMOV32 MRa, mem32 {, CNDF}
        45.       MMOV32 MRa, MRb {, CNDF}
        46.       MMOV32 MSTF, mem32
        47.       MMOVD32 MRa, mem32
        48.       MMOVF32 MRa, #32F
        49.       MMOVI16 MARx, #16I
        50.       MMOVI32 MRa, #32FHex
        51.       MMOVIZ MRa, #16FHi
        52.       MMOVZ16 MRa, mem16
        53.       MMOVXI MRa, #16FLoHex
        54.       MMPYF32 MRa, MRb, MRc
        55.       MMPYF32 MRa, #16FHi, MRb
        56.       MMPYF32 MRa, MRb, #16FHi
        57.       MMPYF32 MRa, MRb, MRc||MADDF32 MRd, MRe, MRf
        58.       MMPYF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        59.       MMPYF32 MRd, MRe, MRf ||MMOV32 mem32, MRa
        60.       MMPYF32 MRa, MRb, MRc ||MSUBF32 MRd, MRe, MRf
        61.       MNEGF32 MRa, MRb{, CNDF}
        62.       MNOP
        63.       MOR32 MRa, MRb, MRc
        64.       MRCNDD {CNDF}
        65.       MSETFLG FLAG, VALUE
        66.       MSTOP
        67.       MSUB32 MRa, MRb, MRc
        68.       MSUBF32 MRa, MRb, MRc
        69.       MSUBF32 MRa, #16FHi, MRb
        70.       MSUBF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        71.       MSUBF32 MRd, MRe, MRf ||MMOV32 mem32, MRa
        72.       MSWAPF MRa, MRb {, CNDF}
        73.       MTESTTF CNDF
        74.       MUI16TOF32 MRa, mem16
        75.       MUI16TOF32 MRa, MRb
        76.       MUI32TOF32 MRa, mem32
        77.       MUI32TOF32 MRa, MRb
        78.       MXOR32 MRa, MRb, MRc
    8. 7.8 CLA Registers
      1. 7.8.1 CLA Base Address Table
      2. 7.8.2 CLA_ONLY_REGS Registers
      3. 7.8.3 CLA_SOFTINT_REGS Registers
      4. 7.8.4 CLA_REGS Registers
      5. 7.8.5 CLA Registers to Driverlib Functions
  10. Dual-Clock Comparator (DCC)
    1. 8.1 Introduction
      1. 8.1.1 Features
      2. 8.1.2 Block Diagram
    2. 8.2 Module Operation
      1. 8.2.1 Configuring DCC Counters
      2. 8.2.2 Single-Shot Measurement Mode
      3. 8.2.3 Continuous Monitoring Mode
      4. 8.2.4 Error Conditions
    3. 8.3 Interrupts
    4. 8.4 Software
      1. 8.4.1 DCC Examples
        1. 8.4.1.1 DCC Single shot Clock verification
        2. 8.4.1.2 DCC Single shot Clock measurement
        3. 8.4.1.3 DCC Continuous clock monitoring
        4. 8.4.1.4 DCC Continuous clock monitoring
        5. 8.4.1.5 DCC Detection of clock failure
    5. 8.5 DCC Registers
      1. 8.5.1 DCC Base Address Table
      2. 8.5.2 DCC_REGS Registers
      3. 8.5.3 DCC Registers to Driverlib Functions
  11. Background CRC-32 (BGCRC)
    1. 9.1 Introduction
      1. 9.1.1 BGCRC Related Collateral
      2. 9.1.2 Features
      3. 9.1.3 Block Diagram
      4. 9.1.4 Memory Wait States and Memory Map
    2. 9.2 Functional Description
      1. 9.2.1 Data Read Unit
      2. 9.2.2 CRC-32 Compute Unit
      3. 9.2.3 CRC Notification Unit
        1. 9.2.3.1 CPU Interrupt, CLA Task and NMI
      4. 9.2.4 Operating Modes
        1. 9.2.4.1 CRC Mode
        2. 9.2.4.2 Scrub Mode
      5. 9.2.5 BGCRC Watchdog
      6. 9.2.6 Hardware and Software Faults Protection
    3. 9.3 Application of the BGCRC
      1. 9.3.1 Software Configuration
      2. 9.3.2 Decision on Error Response Severity
      3. 9.3.3 Decision of Controller for CLA_CRC
      4. 9.3.4 Execution of Time Critical Code from Wait-Stated Memories
      5. 9.3.5 BGCRC Execution
      6. 9.3.6 Debug/Error Response for BGCRC Errors
      7. 9.3.7 BGCRC Golden CRC-32 Value Computation
    4. 9.4 Software
      1. 9.4.1 BGCRC Examples
        1. 9.4.1.1 BGCRC CPU Interrupt Example
        2. 9.4.1.2 BGCRC Example with Watchdog and Lock
        3. 9.4.1.3 CLA-BGCRC Example in CRC mode
        4. 9.4.1.4 CLA-BGCRC Example in Scrub Mode
    5. 9.5 BGCRC Registers
      1. 9.5.1 BGCRC Base Address Table
      2. 9.5.2 BGCRC_REGS Registers
      3. 9.5.3 BGCRC Registers to Driverlib Functions
  12. 10General-Purpose Input/Output (GPIO)
    1. 10.1  Introduction
      1. 10.1.1 GPIO Related Collateral
    2. 10.2  Configuration Overview
    3. 10.3  Digital Inputs on ADC Pins (AIOs)
    4. 10.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 10.5  Digital General-Purpose I/O Control
    6. 10.6  Input Qualification
      1. 10.6.1 No Synchronization (Asynchronous Input)
      2. 10.6.2 Synchronization to SYSCLKOUT Only
      3. 10.6.3 Qualification Using a Sampling Window
    7. 10.7  GPIO and Peripheral Muxing
      1. 10.7.1 GPIO Muxing
      2. 10.7.2 Peripheral Muxing
    8. 10.8  Internal Pullup Configuration Requirements
    9. 10.9  Software
      1. 10.9.1 GPIO Examples
        1. 10.9.1.1 Device GPIO Setup
        2. 10.9.1.2 Device GPIO Toggle
        3. 10.9.1.3 Device GPIO Interrupt
        4. 10.9.1.4 External Interrupt (XINT)
      2. 10.9.2 LED Examples
    10. 10.10 GPIO Registers
      1. 10.10.1 GPIO Base Address Table
      2. 10.10.2 GPIO_CTRL_REGS Registers
      3. 10.10.3 GPIO_DATA_REGS Registers
      4. 10.10.4 GPIO_DATA_READ_REGS Registers
      5. 10.10.5 GPIO Registers to Driverlib Functions
  13. 11Crossbar (X-BAR)
    1. 11.1 Input X-BAR and CLB Input X-BAR
      1. 11.1.1 CLB Input X-BAR
    2. 11.2 ePWM, CLB, and GPIO Output X-BAR
      1. 11.2.1 ePWM X-BAR
        1. 11.2.1.1 ePWM X-BAR Architecture
      2. 11.2.2 CLB X-BAR
        1. 11.2.2.1 CLB X-BAR Architecture
      3. 11.2.3 GPIO Output X-BAR
        1. 11.2.3.1 GPIO Output X-BAR Architecture
      4. 11.2.4 CLB Output X-BAR
        1. 11.2.4.1 CLB Output X-BAR Architecture
      5. 11.2.5 X-BAR Flags
    3. 11.3 XBAR Registers
      1. 11.3.1 XBAR Base Address Table
      2. 11.3.2 INPUT_XBAR_REGS Registers
      3. 11.3.3 XBAR_REGS Registers
      4. 11.3.4 EPWM_XBAR_REGS Registers
      5. 11.3.5 CLB_XBAR_REGS Registers
      6. 11.3.6 OUTPUT_XBAR_REGS Registers
      7. 11.3.7 Register to Driverlib Function Mapping
        1. 11.3.7.1 INPUTXBAR Registers to Driverlib Functions
        2. 11.3.7.2 XBAR Registers to Driverlib Functions
        3. 11.3.7.3 EPWMXBAR Registers to Driverlib Functions
        4. 11.3.7.4 CLBXBAR Registers to Driverlib Functions
        5. 11.3.7.5 OUTPUTXBAR Registers to Driverlib Functions
  14. 12Direct Memory Access (DMA)
    1. 12.1 Introduction
      1. 12.1.1 Features
      2. 12.1.2 Block Diagram
    2. 12.2 Architecture
      1. 12.2.1 Peripheral Interrupt Event Trigger Sources
      2. 12.2.2 DMA Bus
    3. 12.3 Address Pointer and Transfer Control
    4. 12.4 Pipeline Timing and Throughput
    5. 12.5 CPU and CLA Arbitration
    6. 12.6 Channel Priority
      1. 12.6.1 Round-Robin Mode
      2. 12.6.2 Channel 1 High-Priority Mode
    7. 12.7 Overrun Detection Feature
    8. 12.8 Software
      1. 12.8.1 DMA Examples
        1. 12.8.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 12.8.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    9. 12.9 DMA Registers
      1. 12.9.1 DMA Base Address Table
      2. 12.9.2 DMA_REGS Registers
      3. 12.9.3 DMA_CH_REGS Registers
      4. 12.9.4 DMA Registers to Driverlib Functions
  15. 13Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 13.1 Introduction
      1. 13.1.1 ERAD Related Collateral
    2. 13.2 Enhanced Bus Comparator Unit
      1. 13.2.1 Enhanced Bus Comparator Unit Operations
      2. 13.2.2 Event Masking and Exporting
    3. 13.3 System Event Counter Unit
      1. 13.3.1 System Event Counter Modes
        1. 13.3.1.1 Counting Active Levels Versus Edges
        2. 13.3.1.2 Max Mode
        3. 13.3.1.3 Cumulative Mode
        4. 13.3.1.4 Input Signal Selection
      2. 13.3.2 Reset on Event
      3. 13.3.3 Operation Conditions
    4. 13.4 ERAD Ownership, Initialization and Reset
    5. 13.5 ERAD Programming Sequence
      1. 13.5.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 13.5.2 Timer and Counter Programming Sequence
    6. 13.6 Cyclic Redundancy Check Unit
      1. 13.6.1 CRC Unit Qualifier
      2. 13.6.2 CRC Unit Programming Sequence
    7. 13.7 Program Counter Trace
      1. 13.7.1 Functional Block Diagram
      2. 13.7.2 Trace Qualification Modes
        1. 13.7.2.1 Trace Qualifier Input Signals
      3. 13.7.3 Trace Memory
      4. 13.7.4 Trace Input Signal Conditioning
      5. 13.7.5 PC Trace Software Operation
      6. 13.7.6 Trace Operation in Debug Mode
    8. 13.8 Software
      1. 13.8.1 ERAD Examples
        1. 13.8.1.1  ERAD Profiling Interrupts
        2. 13.8.1.2  ERAD Profile Function
        3. 13.8.1.3  ERAD Profile Function
        4. 13.8.1.4  ERAD HWBP Monitor Program Counter
        5. 13.8.1.5  ERAD HWBP Monitor Program Counter
        6. 13.8.1.6  ERAD Profile Function
        7. 13.8.1.7  ERAD HWBP Stack Overflow Detection
        8. 13.8.1.8  ERAD HWBP Stack Overflow Detection
        9. 13.8.1.9  ERAD Stack Overflow
        10. 13.8.1.10 ERAD Profile Interrupts CLA
        11. 13.8.1.11 ERAD Profiling Interrupts
        12. 13.8.1.12 ERAD Profiling Interrupts
        13. 13.8.1.13 ERAD MEMORY ACCESS RESTRICT
        14. 13.8.1.14 ERAD INTERRUPT ORDER
        15. 13.8.1.15 ERAD AND CLB
        16. 13.8.1.16 ERAD PWM PROTECTION
    9. 13.9 ERAD Registers
      1. 13.9.1 ERAD Base Address Table
      2. 13.9.2 ERAD_GLOBAL_REGS Registers
      3. 13.9.3 ERAD_HWBP_REGS Registers
      4. 13.9.4 ERAD_COUNTER_REGS Registers
      5. 13.9.5 ERAD_CRC_GLOBAL_REGS Registers
      6. 13.9.6 ERAD_CRC_REGS Registers
      7. 13.9.7 ERAD Registers to Driverlib Functions
  16. 14Host Interface Controller (HIC)
    1. 14.1 Introduction
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
      3. 14.1.3 HIC Related Collateral
    2. 14.2 Functional Description
      1. 14.2.1 Memory Map
      2. 14.2.2 Connections
        1. 14.2.2.1 Functions of the Connections
      3. 14.2.3 Interrupts and Triggers
    3. 14.3 Operation
      1. 14.3.1 Mailbox Access Mode Overview
        1. 14.3.1.1 Mailbox Access Mode Operation
        2. 14.3.1.2 Configuring HIC Registers With External Host
        3. 14.3.1.3 Mailbox Access Mode Read/Write
      2. 14.3.2 Direct Access Mode Overview
        1. 14.3.2.1 Direct Access Mode Operation
        2. 14.3.2.2 Direct Access Mode Read/Write
      3. 14.3.3 Controlling Reads and Writes
        1. 14.3.3.1 Single-Pin Read/Write Mode (nOE/RnW Pin)
        2. 14.3.3.2 Dual-Pin Read/Write Mode (nOE and nWE Pins)
      4. 14.3.4 Data Lines, Data Width, Data Packing and Unpacking
      5. 14.3.5 Address Translation
      6. 14.3.6 Access Errors
      7. 14.3.7 Security
      8. 14.3.8 HIC Usage
    4. 14.4 Usage Scenarious for Reduced Number of Pins
    5. 14.5 Software
      1. 14.5.1 HIC Examples
        1. 14.5.1.1 HIC 16-bit Memory Access Example
        2. 14.5.1.2 HIC 8-bit Memory Access Example
        3. 14.5.1.3 HIC 16-bit Memory Access FSI Example
    6. 14.6 HIC Registers
      1. 14.6.1 HIC Base Address Table
      2. 14.6.2 HIC_CFG_REGS Registers
      3. 14.6.3 HIC Registers to Driverlib Functions
  17. 15Analog Subsystem
    1. 15.1 Introduction
      1. 15.1.1 Features
      2. 15.1.2 Block Diagram
    2. 15.2 Optimizing Power-Up Time
    3. 15.3 Digital Inputs on ADC Pins (AIOs)
    4. 15.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 15.5 Analog Pins and Internal Connections
    6. 15.6 Analog Subsystem Registers
      1. 15.6.1 ASBSYS Base Address Table
      2. 15.6.2 ANALOG_SUBSYS_REGS Registers
      3. 15.6.3 ASYSCTL Registers to Driverlib Functions
  18. 16Analog-to-Digital Converter (ADC)
    1. 16.1  Introduction
      1. 16.1.1 ADC Related Collateral
      2. 16.1.2 Features
      3. 16.1.3 Block Diagram
    2. 16.2  ADC Configurability
      1. 16.2.1 Clock Configuration
      2. 16.2.2 Resolution
      3. 16.2.3 Voltage Reference
        1. 16.2.3.1 External Reference Mode
        2. 16.2.3.2 Internal Reference Mode
        3. 16.2.3.3 Selecting Reference Mode
      4. 16.2.4 Signal Mode
      5. 16.2.5 Expected Conversion Results
      6. 16.2.6 Interpreting Conversion Results
    3. 16.3  SOC Principle of Operation
      1. 16.3.1 SOC Configuration
      2. 16.3.2 Trigger Operation
      3. 16.3.3 ADC Acquisition (Sample and Hold) Window
      4. 16.3.4 ADC Input Models
      5. 16.3.5 Channel Selection
    4. 16.4  SOC Configuration Examples
      1. 16.4.1 Single Conversion from ePWM Trigger
      2. 16.4.2 Oversampled Conversion from ePWM Trigger
      3. 16.4.3 Multiple Conversions from CPU Timer Trigger
      4. 16.4.4 Software Triggering of SOCs
    5. 16.5  ADC Conversion Priority
    6. 16.6  Burst Mode
      1. 16.6.1 Burst Mode Example
      2. 16.6.2 Burst Mode Priority Example
    7. 16.7  EOC and Interrupt Operation
      1. 16.7.1 Interrupt Overflow
      2. 16.7.2 Continue to Interrupt Mode
      3. 16.7.3 Early Interrupt Configuration Mode
    8. 16.8  Post-Processing Blocks
      1. 16.8.1 PPB Offset Correction
      2. 16.8.2 PPB Error Calculation
      3. 16.8.3 PPB Limit Detection and Zero-Crossing Detection
      4. 16.8.4 PPB Sample Delay Capture
    9. 16.9  Opens/Shorts Detection Circuit (OSDETECT)
      1. 16.9.1 Implementation
      2. 16.9.2 Detecting an Open Input Pin
      3. 16.9.3 Detecting a Shorted Input Pin
    10. 16.10 Power-Up Sequence
    11. 16.11 ADC Calibration
      1. 16.11.1 ADC Zero Offset Calibration
    12. 16.12 ADC Timings
      1. 16.12.1 ADC Timing Diagrams
    13. 16.13 Additional Information
      1. 16.13.1 Ensuring Synchronous Operation
        1. 16.13.1.1 Basic Synchronous Operation
        2. 16.13.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 16.13.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 16.13.1.4 Non-overlapping Conversions
      2. 16.13.2 Choosing an Acquisition Window Duration
      3. 16.13.3 Achieving Simultaneous Sampling
      4. 16.13.4 Result Register Mapping
      5. 16.13.5 Internal Temperature Sensor
      6. 16.13.6 Designing an External Reference Circuit
      7. 16.13.7 ADC-DAC Loopback Testing
      8. 16.13.8 Internal Test Mode
      9. 16.13.9 ADC Gain and Offset Calibration
    14. 16.14 Software
      1. 16.14.1 ADC Examples
        1. 16.14.1.1  ADC Software Triggering
        2. 16.14.1.2  ADC ePWM Triggering
        3. 16.14.1.3  ADC Temperature Sensor Conversion
        4. 16.14.1.4  ADC Synchronous SOC Software Force (adc_soc_software_sync)
        5. 16.14.1.5  ADC Continuous Triggering (adc_soc_continuous)
        6. 16.14.1.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        7. 16.14.1.7  ADC PPB Offset (adc_ppb_offset)
        8. 16.14.1.8  ADC PPB Limits (adc_ppb_limits)
        9. 16.14.1.9  ADC PPB Delay Capture (adc_ppb_delay)
        10. 16.14.1.10 ADC ePWM Triggering Multiple SOC
        11. 16.14.1.11 ADC Burst Mode
        12. 16.14.1.12 ADC Burst Mode Oversampling
        13. 16.14.1.13 ADC SOC Oversampling
        14. 16.14.1.14 ADC PPB PWM trip (adc_ppb_pwm_trip)
        15. 16.14.1.15 ADC Open Shorts Detection (adc_open_shorts_detection)
    15. 16.15 ADC Registers
      1. 16.15.1 ADC Base Address Table
      2. 16.15.2 ADC_RESULT_REGS Registers
      3. 16.15.3 ADC_REGS Registers
      4. 16.15.4 ADC Registers to Driverlib Functions
  19. 17Buffered Digital-to-Analog Converter (DAC)
    1. 17.1 Introduction
      1. 17.1.1 DAC Related Collateral
      2. 17.1.2 Features
      3. 17.1.3 Block Diagram
    2. 17.2 Using the DAC
      1. 17.2.1 Initialization Sequence
      2. 17.2.2 DAC Offset Adjustment
      3. 17.2.3 EPWMSYNCPER Signal
    3. 17.3 Lock Registers
    4. 17.4 Software
      1. 17.4.1 DAC Examples
        1. 17.4.1.1 Buffered DAC Enable
        2. 17.4.1.2 Buffered DAC Random
        3. 17.4.1.3 Buffered DAC Sine (buffdac_sine)
    5. 17.5 DAC Registers
      1. 17.5.1 DAC Base Address Table
      2. 17.5.2 DAC_REGS Registers
      3. 17.5.3 DAC Registers to Driverlib Functions
  20. 18Comparator Subsystem (CMPSS)
    1. 18.1 Introduction
      1. 18.1.1 CMPSS Related Collateral
      2. 18.1.2 Features
      3. 18.1.3 Block Diagram
    2. 18.2 Comparator
    3. 18.3 Reference DAC
    4. 18.4 Ramp Generator
      1. 18.4.1 Ramp Generator Overview
      2. 18.4.2 Ramp Generator Behavior
      3. 18.4.3 Ramp Generator Behavior at Corner Cases
    5. 18.5 Digital Filter
      1. 18.5.1 Filter Initialization Sequence
    6. 18.6 Using the CMPSS
      1. 18.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 18.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 18.6.3 Calibrating the CMPSS
      4. 18.6.4 Enabling and Disabling the CMPSS Clock
    7. 18.7 Software
      1. 18.7.1 CMPSS Examples
        1. 18.7.1.1 CMPSS Asynchronous Trip
        2. 18.7.1.2 CMPSS Digital Filter Configuration
    8. 18.8 CMPSS Registers
      1. 18.8.1 CMPSS Base Address Table
      2. 18.8.2 CMPSS_REGS Registers
      3. 18.8.3 CMPSS Registers to Driverlib Functions
  21. 19Sigma Delta Filter Module (SDFM)
    1. 19.1  Introduction
      1. 19.1.1 SDFM Related Collateral
      2. 19.1.2 Features
      3. 19.1.3 Block Diagram
    2. 19.2  Configuring Device Pins
    3. 19.3  Input Qualification
    4. 19.4  Input Control Unit
    5. 19.5  SDFM Clock Control
    6. 19.6  Sinc Filter
      1. 19.6.1 Data Rate and Latency of the Sinc Filter
    7. 19.7  Data (Primary) Filter Unit
      1. 19.7.1 32-bit or 16-bit Data Filter Output Representation
      2. 19.7.2 Data FIFO
      3. 19.7.3 SDSYNC Event
    8. 19.8  Comparator (Secondary) Filter Unit
      1. 19.8.1 Higher Threshold (HLT) Comparators
      2. 19.8.2 Lower Threshold (LLT) Comparators
      3. 19.8.3 Digital Filter
    9. 19.9  Theoretical SDFM Filter Output
    10. 19.10 Interrupt Unit
      1. 19.10.1 SDFM (SDyERR) Interrupt Sources
      2. 19.10.2 Data Ready (DRINT) Interrupt Sources
    11. 19.11 Software
      1. 19.11.1 SDFM Examples
        1. 19.11.1.1 SDFM Filter Sync CPU
        2. 19.11.1.2 SDFM Filter Sync CLA
        3. 19.11.1.3 SDFM Filter Sync DMA
        4. 19.11.1.4 SDFM PWM Sync
        5. 19.11.1.5 SDFM Type 1 Filter FIFO
        6. 19.11.1.6 SDFM Filter Sync CLA
    12. 19.12 SDFM Registers
      1. 19.12.1 SDFM Base Address Table
      2. 19.12.2 SDFM_REGS Registers
      3. 19.12.3 SDFM Registers to Driverlib Functions
  22. 20Enhanced Pulse Width Modulator (ePWM)
    1. 20.1  Introduction
      1. 20.1.1 EPWM Related Collateral
      2. 20.1.2 Submodule Overview
    2. 20.2  Configuring Device Pins
    3. 20.3  ePWM Modules Overview
    4. 20.4  Time-Base (TB) Submodule
      1. 20.4.1 Purpose of the Time-Base Submodule
      2. 20.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 20.4.3 Calculating PWM Period and Frequency
        1. 20.4.3.1 Time-Base Period Shadow Register
        2. 20.4.3.2 Time-Base Clock Synchronization
        3. 20.4.3.3 Time-Base Counter Synchronization
        4. 20.4.3.4 ePWM SYNC Selection
      4. 20.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 20.4.5 Simultaneous Writes to TBPRD and CMPx Registers Between ePWM Modules
      6. 20.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 20.4.7 Global Load
        1. 20.4.7.1 Global Load Pulse Pre-Scalar
        2. 20.4.7.2 One-Shot Load Mode
        3. 20.4.7.3 One-Shot Sync Mode
    5. 20.5  Counter-Compare (CC) Submodule
      1. 20.5.1 Purpose of the Counter-Compare Submodule
      2. 20.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 20.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 20.5.4 Count Mode Timing Waveforms
    6. 20.6  Action-Qualifier (AQ) Submodule
      1. 20.6.1 Purpose of the Action-Qualifier Submodule
      2. 20.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 20.6.3 Action-Qualifier Event Priority
      4. 20.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 20.6.5 Configuration Requirements for Common Waveforms
    7. 20.7  Dead-Band Generator (DB) Submodule
      1. 20.7.1 Purpose of the Dead-Band Submodule
      2. 20.7.2 Dead-band Submodule Additional Operating Modes
      3. 20.7.3 Operational Highlights for the Dead-Band Submodule
    8. 20.8  PWM Chopper (PC) Submodule
      1. 20.8.1 Purpose of the PWM Chopper Submodule
      2. 20.8.2 Operational Highlights for the PWM Chopper Submodule
      3. 20.8.3 Waveforms
        1. 20.8.3.1 One-Shot Pulse
        2. 20.8.3.2 Duty Cycle Control
    9. 20.9  Trip-Zone (TZ) Submodule
      1. 20.9.1 Purpose of the Trip-Zone Submodule
      2. 20.9.2 Operational Highlights for the Trip-Zone Submodule
        1. 20.9.2.1 Trip-Zone Configurations
      3. 20.9.3 Generating Trip Event Interrupts
    10. 20.10 Event-Trigger (ET) Submodule
      1. 20.10.1 Operational Overview of the ePWM Event-Trigger Submodule
    11. 20.11 Digital Compare (DC) Submodule
      1. 20.11.1 Purpose of the Digital Compare Submodule
      2. 20.11.2 Enhanced Trip Action Using CMPSS
      3. 20.11.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 20.11.4 Operation Highlights of the Digital Compare Submodule
        1. 20.11.4.1 Digital Compare Events
        2. 20.11.4.2 Event Filtering
        3. 20.11.4.3 Valley Switching
    12. 20.12 ePWM Crossbar (X-BAR)
    13. 20.13 Applications to Power Topologies
      1. 20.13.1  Overview of Multiple Modules
      2. 20.13.2  Key Configuration Capabilities
      3. 20.13.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 20.13.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 20.13.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 20.13.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 20.13.7  Practical Applications Using Phase Control Between PWM Modules
      8. 20.13.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 20.13.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 20.13.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 20.13.11 Controlling H-Bridge LLC Resonant Converter
    14. 20.14 Register Lock Protection
    15. 20.15 High-Resolution Pulse Width Modulator (HRPWM)
      1. 20.15.1 Operational Description of HRPWM
        1. 20.15.1.1 Controlling the HRPWM Capabilities
        2. 20.15.1.2 HRPWM Source Clock
        3. 20.15.1.3 Configuring the HRPWM
        4. 20.15.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 20.15.1.5 Principle of Operation
          1. 20.15.1.5.1 Edge Positioning
          2. 20.15.1.5.2 Scaling Considerations
          3. 20.15.1.5.3 Duty Cycle Range Limitation
          4. 20.15.1.5.4 High-Resolution Period
            1. 20.15.1.5.4.1 High-Resolution Period Configuration
        6. 20.15.1.6 Deadband High-Resolution Operation
        7. 20.15.1.7 Scale Factor Optimizing Software (SFO)
        8. 20.15.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 20.15.1.8.1 #Defines for HRPWM Header Files
          2. 20.15.1.8.2 Implementing a Simple Buck Converter
            1. 20.15.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 20.15.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 20.15.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 20.15.1.8.3.1 PWM DAC Function Initialization Code
            2. 20.15.1.8.3.2 PWM DAC Function Run-Time Code
      2. 20.15.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 20.15.2.1 Scale Factor Optimizer Function - int SFO()
        2. 20.15.2.2 Software Usage
          1. 20.15.2.2.1 A Sample of How to Add "Include" Files
          2.        963
          3. 20.15.2.2.2 Declaring an Element
          4.        965
          5. 20.15.2.2.3 Initializing With a Scale Factor Value
          6.        967
          7. 20.15.2.2.4 SFO Function Calls
    16. 20.16 Software
      1. 20.16.1 EPWM Examples
        1. 20.16.1.1  ePWM Trip Zone
        2. 20.16.1.2  ePWM Up Down Count Action Qualifier
        3. 20.16.1.3  ePWM Synchronization
        4. 20.16.1.4  ePWM Digital Compare
        5. 20.16.1.5  ePWM Digital Compare Event Filter Blanking Window
        6. 20.16.1.6  ePWM Valley Switching
        7. 20.16.1.7  ePWM Digital Compare Edge Filter
        8. 20.16.1.8  ePWM Deadband
        9. 20.16.1.9  ePWM DMA
        10. 20.16.1.10 ePWM Chopper
        11. 20.16.1.11 EPWM Configure Signal
        12. 20.16.1.12 Realization of Monoshot mode
        13. 20.16.1.13 EPWM Action Qualifier (epwm_up_aq)
      2. 20.16.2 HRPWM Examples
        1. 20.16.2.1 HRPWM Duty Control with SFO
        2. 20.16.2.2 HRPWM Slider
        3. 20.16.2.3 HRPWM Period Control
        4. 20.16.2.4 HRPWM Duty Control with UPDOWN Mode
        5. 20.16.2.5 HRPWM Slider Test
        6. 20.16.2.6 HRPWM Duty Up Count
        7. 20.16.2.7 HRPWM Period Up-Down Count
    17. 20.17 ePWM Registers
      1. 20.17.1 EPWM Base Address Table
      2. 20.17.2 EPWM_REGS Registers
      3. 20.17.3 Register to Driverlib Function Mapping
        1. 20.17.3.1 EPWM Registers to Driverlib Functions
        2. 20.17.3.2 HRPWM Registers to Driverlib Functions
  23. 21Enhanced Capture (eCAP)
    1. 21.1 Introduction
      1. 21.1.1 Features
      2. 21.1.2 ECAP Related Collateral
    2. 21.2 Description
    3. 21.3 Configuring Device Pins for the eCAP
    4. 21.4 Capture and APWM Operating Mode
    5. 21.5 Capture Mode Description
      1. 21.5.1  Event Prescaler
      2. 21.5.2  Edge Polarity Select and Qualifier
      3. 21.5.3  Continuous/One-Shot Control
      4. 21.5.4  32-Bit Counter and Phase Control
      5. 21.5.5  CAP1-CAP4 Registers
      6. 21.5.6  eCAP Synchronization
        1. 21.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 21.5.7  Interrupt Control
      8. 21.5.8  DMA Interrupt
      9. 21.5.9  Shadow Load and Lockout Control
      10. 21.5.10 APWM Mode Operation
    6. 21.6 Application of the eCAP Module
      1. 21.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 21.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 21.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 21.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 21.7 Application of the APWM Mode
      1. 21.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 21.8 Software
      1. 21.8.1 ECAP Examples
        1. 21.8.1.1 eCAP APWM Example
        2. 21.8.1.2 eCAP Capture PWM Example
        3. 21.8.1.3 eCAP APWM Phase-shift Example
        4. 21.8.1.4 eCAP Software Sync Example
    9. 21.9 eCAP Registers
      1. 21.9.1 ECAP Base Address Table
      2. 21.9.2 ECAP_REGS Registers
      3. 21.9.3 ECAP Registers to Driverlib Functions
  24. 22High Resolution Capture (HRCAP)
    1. 22.1 Introduction
      1. 22.1.1 HRCAP Related Collateral
      2. 22.1.2 Features
      3. 22.1.3 Description
    2. 22.2 Operational Details
      1. 22.2.1 HRCAP Clocking
      2. 22.2.2 HRCAP Initialization Sequence
      3. 22.2.3 HRCAP Interrupts
      4. 22.2.4 HRCAP Calibration
        1. 22.2.4.1 Applying the Scale Factor
    3. 22.3 Known Exceptions
    4. 22.4 Software
      1. 22.4.1 HRCAP Examples
        1. 22.4.1.1 HRCAP Capture and Calibration Example
    5. 22.5 HRCAP Registers
      1. 22.5.1 HRCAP Base Address Table
      2. 22.5.2 HRCAP_REGS Registers
      3. 22.5.3 HRCAP Registers to Driverlib Functions
  25. 23Enhanced Quadrature Encoder Pulse (eQEP)
    1. 23.1  Introduction
      1. 23.1.1 EQEP Related Collateral
    2. 23.2  Configuring Device Pins
    3. 23.3  Description
      1. 23.3.1 EQEP Inputs
      2. 23.3.2 Functional Description
      3. 23.3.3 eQEP Memory Map
    4. 23.4  Quadrature Decoder Unit (QDU)
      1. 23.4.1 Position Counter Input Modes
        1. 23.4.1.1 Quadrature Count Mode
        2. 23.4.1.2 Direction-Count Mode
        3. 23.4.1.3 Up-Count Mode
        4. 23.4.1.4 Down-Count Mode
      2. 23.4.2 eQEP Input Polarity Selection
      3. 23.4.3 Position-Compare Sync Output
    5. 23.5  Position Counter and Control Unit (PCCU)
      1. 23.5.1 Position Counter Operating Modes
        1. 23.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM]=00)
        2. 23.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM]=01)
        3. 23.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 23.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 23.5.2 Position Counter Latch
        1. 23.5.2.1 Index Event Latch
        2. 23.5.2.2 Strobe Event Latch
      3. 23.5.3 Position Counter Initialization
      4. 23.5.4 eQEP Position-compare Unit
    6. 23.6  eQEP Edge Capture Unit
    7. 23.7  eQEP Watchdog
    8. 23.8  eQEP Unit Timer Base
    9. 23.9  QMA Module
      1. 23.9.1 Modes of Operation
        1. 23.9.1.1 QMA Mode-1 (QMACTRL[MODE]=1)
        2. 23.9.1.2 QMA Mode-2 (QMACTRL[MODE]=2)
      2. 23.9.2 Interrupt and Error Generation
    10. 23.10 eQEP Interrupt Structure
    11. 23.11 Software
      1. 23.11.1 EQEP Examples
        1. 23.11.1.1 Frequency Measurement Using eQEP
        2. 23.11.1.2 Position and Speed Measurement Using eQEP
        3. 23.11.1.3 ePWM frequency Measurement Using eQEP via xbar connection
        4. 23.11.1.4 Frequency Measurement Using eQEP via unit timeout interrupt
        5. 23.11.1.5 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 23.12 eQEP Registers
      1. 23.12.1 EQEP Base Address Table
      2. 23.12.2 EQEP_REGS Registers
      3. 23.12.3 EQEP Registers to Driverlib Functions
  26. 24Serial Peripheral Interface (SPI)
    1. 24.1 Introduction
      1. 24.1.1 Features
      2. 24.1.2 SPI Related Collateral
      3. 24.1.3 Block Diagram
    2. 24.2 System-Level Integration
      1. 24.2.1 SPI Module Signals
      2. 24.2.2 Configuring Device Pins
        1. 24.2.2.1 GPIOs Required for High-Speed Mode
      3. 24.2.3 SPI Interrupts
      4. 24.2.4 DMA Support
    3. 24.3 SPI Operation
      1. 24.3.1 Introduction to Operation
      2. 24.3.2 Master Mode
      3. 24.3.3 Slave Mode
      4. 24.3.4 Data Format
        1. 24.3.4.1 Transmission of Bit from SPIRXBUF
      5. 24.3.5 Baud Rate Selection
        1. 24.3.5.1 Baud Rate Determination
        2. 24.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 24.3.6 SPI Clocking Schemes
      7. 24.3.7 SPI FIFO Description
      8. 24.3.8 SPI DMA Transfers
        1. 24.3.8.1 Transmitting Data Using SPI with DMA
        2. 24.3.8.2 Receiving Data Using SPI with DMA
    4. 24.4 Programming Procedure
      1. 24.4.1 Initialization Upon Reset
      2. 24.4.2 Configuring the SPI
      3. 24.4.3 Data Transfer Example
    5. 24.5 Software
      1. 24.5.1 SPI Examples
        1. 24.5.1.1 SPI Digital Loopback
        2. 24.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 24.5.1.3 SPI Digital External Loopback without FIFO Interrupts
        4. 24.5.1.4 SPI Digital External Loopback with FIFO Interrupts
        5. 24.5.1.5 SPI Digital Loopback with DMA
        6. 24.5.1.6 SPI EEPROM
        7. 24.5.1.7 SPI DMA EEPROM
    6. 24.6 SPI Registers
      1. 24.6.1 SPI Base Address Table
      2. 24.6.2 SPI_REGS Registers
      3. 24.6.3 SPI Registers to Driverlib Functions
  27. 25Serial Communications Interface (SCI)
    1. 25.1  Introduction
      1. 25.1.1 Features
      2. 25.1.2 SCI Related Collateral
      3. 25.1.3 Block Diagram
    2. 25.2  Architecture
    3. 25.3  SCI Module Signal Summary
    4. 25.4  Configuring Device Pins
    5. 25.5  Multiprocessor and Asynchronous Communication Modes
    6. 25.6  SCI Programmable Data Format
    7. 25.7  SCI Multiprocessor Communication
      1. 25.7.1 Recognizing the Address Byte
      2. 25.7.2 Controlling the SCI TX and RX Features
      3. 25.7.3 Receipt Sequence
    8. 25.8  Idle-Line Multiprocessor Mode
      1. 25.8.1 Idle-Line Mode Steps
      2. 25.8.2 Block Start Signal
      3. 25.8.3 Wake-Up Temporary (WUT) Flag
        1. 25.8.3.1 Sending a Block Start Signal
      4. 25.8.4 Receiver Operation
    9. 25.9  Address-Bit Multiprocessor Mode
      1. 25.9.1 Sending an Address
    10. 25.10 SCI Communication Format
      1. 25.10.1 Receiver Signals in Communication Modes
      2. 25.10.2 Transmitter Signals in Communication Modes
    11. 25.11 SCI Port Interrupts
      1. 25.11.1 Break Detect
    12. 25.12 SCI Baud Rate Calculations
    13. 25.13 SCI Enhanced Features
      1. 25.13.1 SCI FIFO Description
      2. 25.13.2 SCI Auto-Baud
      3. 25.13.3 Autobaud-Detect Sequence
    14. 25.14 Software
      1. 25.14.1 SCI Examples
        1. 25.14.1.1 Tune Baud Rate via UART Example
        2. 25.14.1.2 SCI FIFO Digital Loop Back
        3. 25.14.1.3 SCI Digital Loop Back with Interrupts
        4. 25.14.1.4 SCI Echoback
        5. 25.14.1.5 stdout redirect example
    15. 25.15 SCI Registers
      1. 25.15.1 SCI Base Address Table
      2. 25.15.2 SCI_REGS Registers
      3. 25.15.3 SCI Registers to Driverlib Functions
  28. 26Inter-Integrated Circuit Module (I2C)
    1. 26.1 Introduction
      1. 26.1.1 I2C Related Collateral
      2. 26.1.2 Features
      3. 26.1.3 Features Not Supported
      4. 26.1.4 Functional Overview
      5. 26.1.5 Clock Generation
      6. 26.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 26.1.6.1 Formula for the Master Clock Period
    2. 26.2 Configuring Device Pins
    3. 26.3 I2C Module Operational Details
      1. 26.3.1  Input and Output Voltage Levels
      2. 26.3.2  Selecting Pullup Resistors
      3. 26.3.3  Data Validity
      4. 26.3.4  Operating Modes
      5. 26.3.5  I2C Module START and STOP Conditions
      6. 26.3.6  Non-repeat Mode versus Repeat Mode
      7. 26.3.7  Serial Data Formats
        1. 26.3.7.1 7-Bit Addressing Format
        2. 26.3.7.2 10-Bit Addressing Format
        3. 26.3.7.3 Free Data Format
        4. 26.3.7.4 Using a Repeated START Condition
      8. 26.3.8  Clock Synchronization
      9. 26.3.9  Arbitration
      10. 26.3.10 Digital Loopback Mode
      11. 26.3.11 NACK Bit Generation
    4. 26.4 Interrupt Requests Generated by the I2C Module
      1. 26.4.1 Basic I2C Interrupt Requests
      2. 26.4.2 I2C FIFO Interrupts
    5. 26.5 Resetting or Disabling the I2C Module
    6. 26.6 Software
      1. 26.6.1 I2C Examples
        1. 26.6.1.1 C28x-I2C Library source file for FIFO interrupts
        2. 26.6.1.2 C28x-I2C Library source file for FIFO using polling
        3. 26.6.1.3 C28x-I2C Library source file for FIFO interrupts
        4. 26.6.1.4 I2C Digital Loopback with FIFO Interrupts
        5. 26.6.1.5 I2C EEPROM
        6. 26.6.1.6 I2C Digital External Loopback with FIFO Interrupts
        7. 26.6.1.7 I2C EEPROM
        8. 26.6.1.8 I2C controller target communication using FIFO interrupts
        9. 26.6.1.9 I2C EEPROM
    7. 26.7 I2C Registers
      1. 26.7.1 I2C Base Address Table
      2. 26.7.2 I2C_REGS Registers
      3. 26.7.3 I2C Registers to Driverlib Functions
  29. 27Power Management Bus Module (PMBus)
    1. 27.1 Introduction
      1. 27.1.1 PMBUS Related Collateral
      2. 27.1.2 Features
      3. 27.1.3 Block Diagram
    2. 27.2 Configuring Device Pins
    3. 27.3 Slave Mode Operation
      1. 27.3.1 Configuration
      2. 27.3.2 Message Handling
        1. 27.3.2.1  Quick Command
        2. 27.3.2.2  Send Byte
        3. 27.3.2.3  Receive Byte
        4. 27.3.2.4  Write Byte and Write Word
        5. 27.3.2.5  Read Byte and Read Word
        6. 27.3.2.6  Process Call
        7. 27.3.2.7  Block Write
        8. 27.3.2.8  Block Read
        9. 27.3.2.9  Block Write-Block Read Process Call
        10. 27.3.2.10 Alert Response
        11. 27.3.2.11 Extended Command
        12. 27.3.2.12 Group Command
    4. 27.4 Master Mode Operation
      1. 27.4.1 Configuration
      2. 27.4.2 Message Handling
        1. 27.4.2.1  Quick Command
        2. 27.4.2.2  Send Byte
        3. 27.4.2.3  Receive Byte
        4. 27.4.2.4  Write Byte and Write Word
        5. 27.4.2.5  Read Byte and Read Word
        6. 27.4.2.6  Process Call
        7. 27.4.2.7  Block Write
        8. 27.4.2.8  Block Read
        9. 27.4.2.9  Block Write-Block Read Process Call
        10. 27.4.2.10 Alert Response
        11. 27.4.2.11 Extended Command
        12. 27.4.2.12 Group Command
    5. 27.5 PMBus Registers
      1. 27.5.1 PMBUS Base Address Table
      2. 27.5.2 PMBUS_REGS Registers
      3. 27.5.3 PMBUS Registers to Driverlib Functions
  30. 28Controller Area Network (CAN)
    1. 28.1  Introduction
      1. 28.1.1 DCAN Related Collateral
      2. 28.1.2 Features
      3. 28.1.3 Block Diagram
        1. 28.1.3.1 CAN Core
        2. 28.1.3.2 Message Handler
        3. 28.1.3.3 Message RAM
        4. 28.1.3.4 Registers and Message Object Access (IFx)
    2. 28.2  Functional Description
      1. 28.2.1 Configuring Device Pins
      2. 28.2.2 Address/Data Bus Bridge
    3. 28.3  Operating Modes
      1. 28.3.1 Initialization
      2. 28.3.2 CAN Message Transfer (Normal Operation)
        1. 28.3.2.1 Disabled Automatic Retransmission
        2. 28.3.2.2 Auto-Bus-On
      3. 28.3.3 Test Modes
        1. 28.3.3.1 Silent Mode
        2. 28.3.3.2 Loopback Mode
        3. 28.3.3.3 External Loopback Mode
        4. 28.3.3.4 Loopback Combined with Silent Mode
    4. 28.4  Multiple Clock Source
    5. 28.5  Interrupt Functionality
      1. 28.5.1 Message Object Interrupts
      2. 28.5.2 Status Change Interrupts
      3. 28.5.3 Error Interrupts
      4. 28.5.4 Peripheral Interrupt Expansion (PIE) Module Nomenclature for DCAN Interrupts
      5. 28.5.5 Interrupt Topologies
    6. 28.6  DMA Functionality
    7. 28.7  Parity Check Mechanism
      1. 28.7.1 Behavior on Parity Error
    8. 28.8  Debug Mode
    9. 28.9  Module Initialization
    10. 28.10 Configuration of Message Objects
      1. 28.10.1 Configuration of a Transmit Object for Data Frames
      2. 28.10.2 Configuration of a Transmit Object for Remote Frames
      3. 28.10.3 Configuration of a Single Receive Object for Data Frames
      4. 28.10.4 Configuration of a Single Receive Object for Remote Frames
      5. 28.10.5 Configuration of a FIFO Buffer
    11. 28.11 Message Handling
      1. 28.11.1  Message Handler Overview
      2. 28.11.2  Receive/Transmit Priority
      3. 28.11.3  Transmission of Messages in Event Driven CAN Communication
      4. 28.11.4  Updating a Transmit Object
      5. 28.11.5  Changing a Transmit Object
      6. 28.11.6  Acceptance Filtering of Received Messages
      7. 28.11.7  Reception of Data Frames
      8. 28.11.8  Reception of Remote Frames
      9. 28.11.9  Reading Received Messages
      10. 28.11.10 Requesting New Data for a Receive Object
      11. 28.11.11 Storing Received Messages in FIFO Buffers
      12. 28.11.12 Reading from a FIFO Buffer
    12. 28.12 CAN Bit Timing
      1. 28.12.1 Bit Time and Bit Rate
        1. 28.12.1.1 Synchronization Segment
        2. 28.12.1.2 Propagation Time Segment
        3. 28.12.1.3 Phase Buffer Segments and Synchronization
        4. 28.12.1.4 Oscillator Tolerance Range
      2. 28.12.2 Configuration of the CAN Bit Timing
        1. 28.12.2.1 Calculation of the Bit Timing Parameters
        2. 28.12.2.2 Example for Bit Timing at High Baudrate
        3. 28.12.2.3 Example for Bit Timing at Low Baudrate
    13. 28.13 Message Interface Register Sets
      1. 28.13.1 Message Interface Register Sets 1 and 2 (IF1 and IF2)
      2. 28.13.2 Message Interface Register Set 3 (IF3)
    14. 28.14 Message RAM
      1. 28.14.1 Structure of Message Objects
      2. 28.14.2 Addressing Message Objects in RAM
      3. 28.14.3 Message RAM Representation in Debug Mode
    15. 28.15 Software
      1. 28.15.1 CAN Examples
        1. 28.15.1.1 CAN External Loopback
        2. 28.15.1.2 CAN External Loopback with Interrupts
        3. 28.15.1.3 CAN External Loopback with DMA
        4. 28.15.1.4 CAN Transmit and Receive Configurations
        5. 28.15.1.5 CAN Error Generation Example
        6. 28.15.1.6 CAN Remote Request Loopback
        7. 28.15.1.7 CAN example that illustrates the usage of Mask registers
    16. 28.16 CAN Registers
      1. 28.16.1 CAN Base Address Table
      2. 28.16.2 CAN_REGS Registers
      3. 28.16.3 CAN Registers to Driverlib Functions
  31. 29Modular Controller Area Network (MCAN)
    1. 29.1 MCAN Introduction
      1. 29.1.1 MCAN Related Collateral
      2. 29.1.2 MCAN Features
    2. 29.2 MCAN Environment
    3. 29.3 CAN Network Basics
    4. 29.4 MCAN Integration
    5. 29.5 MCAN Functional Description
      1. 29.5.1  Module Clocking Requirements
      2. 29.5.2  Interrupt Requests
      3. 29.5.3  Operating Modes
        1. 29.5.3.1 Software Initialization
        2. 29.5.3.2 Normal Operation
        3. 29.5.3.3 CAN FD Operation
      4. 29.5.4  Transmitter Delay Compensation
        1. 29.5.4.1 Description
        2. 29.5.4.2 Transmitter Delay Compensation Measurement
      5. 29.5.5  Restricted Operation Mode
      6. 29.5.6  Bus Monitoring Mode
      7. 29.5.7  Disabled Automatic Retransmission (DAR) Mode
        1. 29.5.7.1 Frame Transmission in DAR Mode
      8. 29.5.8  Clock Stop Mode
        1. 29.5.8.1 Suspend Mode
        2. 29.5.8.2 Wakeup Request
      9. 29.5.9  Test Modes
        1. 29.5.9.1 External Loop Back Mode
        2. 29.5.9.2 Internal Loop Back Mode
      10. 29.5.10 Timestamp Generation
        1. 29.5.10.1 External Timestamp Counter
      11. 29.5.11 Timeout Counter
      12. 29.5.12 Safety
        1. 29.5.12.1 ECC Wrapper
        2. 29.5.12.2 ECC Aggregator
          1. 29.5.12.2.1 ECC Aggregator Overview
          2. 29.5.12.2.2 ECC Aggregator Registers
        3. 29.5.12.3 Reads to ECC Control and Status Registers
        4. 29.5.12.4 ECC Interrupts
      13. 29.5.13 Rx Handling
        1. 29.5.13.1 Acceptance Filtering
          1. 29.5.13.1.1 Range Filter
          2. 29.5.13.1.2 Filter for Specific IDs
          3. 29.5.13.1.3 Classic Bit Mask Filter
          4. 29.5.13.1.4 Standard Message ID Filtering
          5. 29.5.13.1.5 Extended Message ID Filtering
        2. 29.5.13.2 Rx FIFOs
          1. 29.5.13.2.1 Rx FIFO Blocking Mode
          2. 29.5.13.2.2 Rx FIFO Overwrite Mode
        3. 29.5.13.3 Dedicated Rx Buffers
          1. 29.5.13.3.1 Rx Buffer Handling
      14. 29.5.14 Tx Handling
        1. 29.5.14.1 Transmit Pause
        2. 29.5.14.2 Dedicated Tx Buffers
        3. 29.5.14.3 Tx FIFO
        4. 29.5.14.4 Tx Queue
        5. 29.5.14.5 Mixed Dedicated Tx Buffers/Tx FIFO
        6. 29.5.14.6 Mixed Dedicated Tx Buffers/Tx Queue
        7. 29.5.14.7 Transmit Cancellation
        8. 29.5.14.8 Tx Event Handling
      15. 29.5.15 FIFO Acknowledge Handling
      16. 29.5.16 Message RAM
        1. 29.5.16.1 Message RAM Configuration
        2. 29.5.16.2 Rx Buffer and FIFO Element
        3. 29.5.16.3 Tx Buffer Element
        4. 29.5.16.4 Tx Event FIFO Element
        5. 29.5.16.5 Standard Message ID Filter Element
        6. 29.5.16.6 Extended Message ID Filter Element
    6. 29.6 Software
      1. 29.6.1 MCAN Examples
        1. 29.6.1.1  MCAN Internal Loopback with Interrupt
        2. 29.6.1.2  MCAN Loopback with Interrupts Example Using SYSCONFIG Tool
        3. 29.6.1.3  MCAN receive using Rx Buffer
        4. 29.6.1.4  MCAN External Reception (with mask filter) into RX-FIFO1
        5. 29.6.1.5  MCAN Classic frames transmission using Tx Buffer
        6. 29.6.1.6  MCAN External Reception (with RANGE filter) into RX-FIFO1
        7. 29.6.1.7  MCAN External Transmit using Tx Buffer
        8. 29.6.1.8  MCAN receive using Rx Buffer
        9. 29.6.1.9  MCAN Internal Loopback with Interrupt
        10. 29.6.1.10 MCAN External Transmit using Tx Buffer
    7. 29.7 MCAN Registers
      1. 29.7.1 MCAN Base Address Table
      2. 29.7.2 MCANSS_REGS Registers
      3. 29.7.3 MCAN_REGS Registers
      4. 29.7.4 MCAN_ERROR_REGS Registers
      5. 29.7.5 MCAN Registers to Driverlib Functions
  32. 30Local Interconnect Network (LIN)
    1. 30.1 Introduction
      1. 30.1.1 SCI Features
      2. 30.1.2 LIN Features
      3. 30.1.3 LIN Related Collateral
      4. 30.1.4 Block Diagram
    2. 30.2 Serial Communications Interface Module
      1. 30.2.1 SCI Communication Formats
        1. 30.2.1.1 SCI Frame Formats
        2. 30.2.1.2 SCI Asynchronous Timing Mode
        3. 30.2.1.3 SCI Baud Rate
          1. 30.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode
        4. 30.2.1.4 SCI Multiprocessor Communication Modes
          1. 30.2.1.4.1 Idle-Line Multiprocessor Modes
          2. 30.2.1.4.2 Address-Bit Multiprocessor Mode
        5. 30.2.1.5 SCI Multibuffered Mode
      2. 30.2.2 SCI Interrupts
        1. 30.2.2.1 Transmit Interrupt
        2. 30.2.2.2 Receive Interrupt
        3. 30.2.2.3 WakeUp Interrupt
        4. 30.2.2.4 Error Interrupts
      3. 30.2.3 SCI DMA Interface
        1. 30.2.3.1 Receive DMA Requests
        2. 30.2.3.2 Transmit DMA Requests
      4. 30.2.4 SCI Configurations
        1. 30.2.4.1 Receiving Data
          1. 30.2.4.1.1 Receiving Data in Single-Buffer Mode
          2. 30.2.4.1.2 Receiving Data in Multibuffer Mode
        2. 30.2.4.2 Transmitting Data
          1. 30.2.4.2.1 Transmitting Data in Single-Buffer Mode
          2. 30.2.4.2.2 Transmitting Data in Multibuffer Mode
      5. 30.2.5 SCI Low-Power Mode
        1. 30.2.5.1 Sleep Mode for Multiprocessor Communication
    3. 30.3 Local Interconnect Network Module
      1. 30.3.1 LIN Communication Formats
        1. 30.3.1.1  LIN Standards
        2. 30.3.1.2  Message Frame
          1. 30.3.1.2.1 Message Header
          2. 30.3.1.2.2 Response
        3. 30.3.1.3  Synchronizer
        4. 30.3.1.4  Baud Rate
          1. 30.3.1.4.1 Fractional Divider
          2. 30.3.1.4.2 Superfractional Divider
            1. 30.3.1.4.2.1 Superfractional Divider In LIN Mode
        5. 30.3.1.5  Header Generation
          1. 30.3.1.5.1 Event Triggered Frame Handling
          2. 30.3.1.5.2 Header Reception and Adaptive Baud Rate
        6. 30.3.1.6  Extended Frames Handling
        7. 30.3.1.7  Timeout Control
          1. 30.3.1.7.1 No-Response Error (NRE)
          2. 30.3.1.7.2 Bus Idle Detection
          3. 30.3.1.7.3 Timeout After Wakeup Signal and Timeout After Three Wakeup Signals
        8. 30.3.1.8  TXRX Error Detector (TED)
          1. 30.3.1.8.1 Bit Errors
          2. 30.3.1.8.2 Physical Bus Errors
          3. 30.3.1.8.3 ID Parity Errors
          4. 30.3.1.8.4 Checksum Errors
        9. 30.3.1.9  Message Filtering and Validation
        10. 30.3.1.10 Receive Buffers
        11. 30.3.1.11 Transmit Buffers
      2. 30.3.2 LIN Interrupts
      3. 30.3.3 Servicing LIN Interrupts
      4. 30.3.4 LIN DMA Interface
        1. 30.3.4.1 LIN Receive DMA Requests
        2. 30.3.4.2 LIN Transmit DMA Requests
      5. 30.3.5 LIN Configurations
        1. 30.3.5.1 Receiving Data
          1. 30.3.5.1.1 Receiving Data in Single-Buffer Mode
          2. 30.3.5.1.2 Receiving Data in Multibuffer Mode
        2. 30.3.5.2 Transmitting Data
          1. 30.3.5.2.1 Transmitting Data in Single-Buffer Mode
          2. 30.3.5.2.2 Transmitting Data in Multibuffer Mode
    4. 30.4 Low-Power Mode
      1. 30.4.1 Entering Sleep Mode
      2. 30.4.2 Wakeup
      3. 30.4.3 Wakeup Timeouts
    5. 30.5 Emulation Mode
    6. 30.6 Software
      1. 30.6.1 LIN Examples
        1. 30.6.1.1 LIN Internal Loopback with Interrupts
        2. 30.6.1.2 LIN SCI Mode Internal Loopback with Interrupts
        3. 30.6.1.3 LIN SCI MODE Internal Loopback with DMA
        4. 30.6.1.4 LIN Internal Loopback without interrupts(polled mode)
        5. 30.6.1.5 LIN Internal Loopback with Interrupts using Sysconfig
        6. 30.6.1.6 LIN Incomplete Header Detection
        7. 30.6.1.7 LIN SCI MODE (Single Buffer) Internal Loopback with DMA
        8. 30.6.1.8 LIN External Loopback without interrupts(polled mode)
    7. 30.7 SCI/LIN Registers
      1. 30.7.1 LIN Base Address Table
      2. 30.7.2 LIN_REGS Registers
      3. 30.7.3 LIN Registers to Driverlib Functions
  33. 31Fast Serial Interface (FSI)
    1. 31.1 Introduction
      1. 31.1.1 FSI Related Collateral
      2. 31.1.2 FSI Features
    2. 31.2 System-level Integration
      1. 31.2.1 CPU Interface
      2. 31.2.2 Signal Description
        1. 31.2.2.1 Configuring Device Pins
      3. 31.2.3 FSI Interrupts
        1. 31.2.3.1 Transmitter Interrupts
        2. 31.2.3.2 Receiver Interrupts
        3. 31.2.3.3 Configuring Interrupts
        4. 31.2.3.4 Handling Interrupts
      4. 31.2.4 CLA Task Triggering
      5. 31.2.5 DMA Interface
      6. 31.2.6 External Frame Trigger Mux
    3. 31.3 FSI Functional Description
      1. 31.3.1  Introduction to Operation
      2. 31.3.2  FSI Transmitter Module
        1. 31.3.2.1 Initialization
        2. 31.3.2.2 FSI_TX Clocking
        3. 31.3.2.3 Transmitting Frames
          1. 31.3.2.3.1 Software Triggered Frames
          2. 31.3.2.3.2 Externally Triggered Frames
          3. 31.3.2.3.3 Ping Frame Generation
            1. 31.3.2.3.3.1 Automatic Ping Frames
            2. 31.3.2.3.3.2 Software Triggered Ping Frame
            3. 31.3.2.3.3.3 Externally Triggered Ping Frame
          4. 31.3.2.3.4 Transmitting Frames with DMA
        4. 31.3.2.4 Transmit Buffer Management
        5. 31.3.2.5 CRC Submodule
        6. 31.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 31.3.2.7 Reset
      3. 31.3.3  FSI Receiver Module
        1. 31.3.3.1  Initialization
        2. 31.3.3.2  FSI_RX Clocking
        3. 31.3.3.3  Receiving Frames
          1. 31.3.3.3.1 Receiving Frames with DMA
        4. 31.3.3.4  Ping Frame Watchdog
        5. 31.3.3.5  Frame Watchdog
        6. 31.3.3.6  Delay Line Control
        7. 31.3.3.7  Buffer Management
        8. 31.3.3.8  CRC Submodule
        9. 31.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 31.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 31.3.3.11 FSI_RX Reset
      4. 31.3.4  Frame Format
        1. 31.3.4.1 FSI Frame Phases
        2. 31.3.4.2 Frame Types
          1. 31.3.4.2.1 Ping Frames
          2. 31.3.4.2.2 Error Frames
          3. 31.3.4.2.3 Data Frames
        3. 31.3.4.3 Multi-Lane Transmission
      5. 31.3.5  Flush Sequence
      6. 31.3.6  Internal Loopback
      7. 31.3.7  CRC Generation
      8. 31.3.8  ECC Module
      9. 31.3.9  Tag Matching
      10. 31.3.10 User Data Filtering (UDATA Matching)
      11. 31.3.11 TDM Configurations
      12. 31.3.12 FSI Trigger Generation
      13. 31.3.13 FSI-SPI Compatibility Mode
        1. 31.3.13.1 Available SPI Modes
          1. 31.3.13.1.1 FSITX as SPI Master, Transmit Only
            1. 31.3.13.1.1.1 Initialization
            2. 31.3.13.1.1.2 Operation
          2. 31.3.13.1.2 FSIRX as SPI Slave, Receive Only
            1. 31.3.13.1.2.1 Initialization
            2. 31.3.13.1.2.2 Operation
          3. 31.3.13.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Master
            1. 31.3.13.1.3.1 Initialization
            2. 31.3.13.1.3.2 Operation
    4. 31.4 FSI Programing Guide
      1. 31.4.1 Establishing the Communication Link
        1. 31.4.1.1 Establishing the Communication Link from the Master Device
        2. 31.4.1.2 Establishing the Communication Link from the Slave Device
      2. 31.4.2 Register Protection
      3. 31.4.3 Emulation Mode
    5. 31.5 Software
      1. 31.5.1 FSI Examples
        1. 31.5.1.1  FSI Loopback:CPU Control
        2. 31.5.1.2  FSI Loopback CLA control
        3. 31.5.1.3  FSI DMA frame transfers:DMA Control
        4. 31.5.1.4  FSI data transfer by external trigger
        5. 31.5.1.5  FSI data transfers upon CPU Timer event
        6. 31.5.1.6  FSI and SPI communication(fsi_ex6_spi_main_tx)
        7. 31.5.1.7  FSI and SPI communication(fsi_ex7_spi_remote_rx)
        8. 31.5.1.8  FSI P2Point Connection:Rx Side
        9. 31.5.1.9  FSI P2Point Connection:Tx Side
        10. 31.5.1.10 FSI daisy chain topology, lead device example
        11. 31.5.1.11 FSI daisy chain topology, node device example
    6. 31.6 FSI Registers
      1. 31.6.1 FSI Base Address Table
      2. 31.6.2 FSI_TX_REGS Registers
      3. 31.6.3 FSI_RX_REGS Registers
      4. 31.6.4 FSI Registers to Driverlib Functions
  34. 32Configurable Logic Block (CLB)
    1. 32.1 Introduction
      1. 32.1.1 CLB Related Collateral
    2. 32.2 Description
      1. 32.2.1 CLB Clock
    3. 32.3 CLB Input/Output Connection
      1. 32.3.1 Overview
      2. 32.3.2 CLB Input Selection
      3. 32.3.3 CLB Output Selection
      4. 32.3.4 CLB Output Signal Multiplexer
    4. 32.4 CLB Tile
      1. 32.4.1 Static Switch Block
      2. 32.4.2 Counter Block
        1. 32.4.2.1 Counter Description
        2. 32.4.2.2 Counter Operation
        3. 32.4.2.3 Serializer Mode
        4. 32.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 32.4.3 FSM Block
      4. 32.4.4 LUT4 Block
      5. 32.4.5 Output LUT Block
      6. 32.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 32.4.7 High Level Controller (HLC)
        1. 32.4.7.1 High Level Controller Events
        2. 32.4.7.2 High Level Controller Instructions
        3. 32.4.7.3 <Src> and <Dest>
        4. 32.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 32.5 CPU Interface
      1. 32.5.1 Register Description
      2. 32.5.2 Non-Memory Mapped Registers
    6. 32.6 DMA Access
    7. 32.7 CLB Data Export Through SPI RX Buffer
    8. 32.8 Software
      1. 32.8.1 CLB Examples
        1. 32.8.1.1  CLB Empty Project
        2. 32.8.1.2  CLB Combinational Logic
        3. 32.8.1.3  CLB GPIO Input Filter
        4. 32.8.1.4  CLB Auxilary PWM
        5. 32.8.1.5  CLB PWM Protection
        6. 32.8.1.6  CLB Event Window
        7. 32.8.1.7  CLB Signal Generator
        8. 32.8.1.8  CLB State Machine
        9. 32.8.1.9  CLB External Signal AND Gate
        10. 32.8.1.10 CLB Timer
        11. 32.8.1.11 CLB Timer Two States
        12. 32.8.1.12 CLB Interrupt Tag
        13. 32.8.1.13 CLB Output Intersect
        14. 32.8.1.14 CLB PUSH PULL
        15. 32.8.1.15 CLB Multi Tile
        16. 32.8.1.16 CLB Glue Logic
        17. 32.8.1.17 CLB based One-shot PWM
        18. 32.8.1.18 CLB AOC Control
        19. 32.8.1.19 CLB AOC Release Control
        20. 32.8.1.20 CLB XBARs
        21. 32.8.1.21 CLB AOC Control
        22. 32.8.1.22 CLB Serializer
        23. 32.8.1.23 CLB LFSR
        24. 32.8.1.24 CLB Lock Output Mask
        25. 32.8.1.25 CLB INPUT Pipeline Mode
        26. 32.8.1.26 CLB Clocking and PIPELINE Mode
        27. 32.8.1.27 CLB SPI Data Export
        28. 32.8.1.28 CLB SPI Data Export DMA
        29. 32.8.1.29 CLB Trip Zone Timestamp
        30. 32.8.1.30 CLB CRC
        31. 32.8.1.31 CLB TDM Serial Port
        32. 32.8.1.32 CLB LED Driver
    9. 32.9 CLB Registers
      1. 32.9.1 CLB Base Address Table
      2. 32.9.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 32.9.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 32.9.4 CLB_DATA_EXCHANGE_REGS Registers
      5. 32.9.5 CLB Registers to Driverlib Functions
  35. 33Advanced Encryption Standard (AES) Accelerator
    1. 33.1 Introduction
      1. 33.1.1 AES Block Diagram
        1. 33.1.1.1 Interfaces
        2. 33.1.1.2 AES Subsystem
        3. 33.1.1.3 AES Wide-Bus Engine
      2. 33.1.2 AES Algorithm
    2. 33.2 AES Operating Modes
      1. 33.2.1  GCM Operation
      2. 33.2.2  CCM Operation
      3. 33.2.3  XTS Operation
      4. 33.2.4  ECB Feedback Mode
      5. 33.2.5  CBC Feedback Mode
      6. 33.2.6  CTR and ICM Feedback Modes
      7. 33.2.7  CFB Mode
      8. 33.2.8  F8 Mode
      9. 33.2.9  F9 Operation
      10. 33.2.10 CBC-MAC Operation
    3. 33.3 Extended and Combined Modes of Operations
      1. 33.3.1 GCM Protocol Operation
      2. 33.3.2 CCM Protocol Operation
      3. 33.3.3 Hardware Requests
    4. 33.4 AES Module Programming Guide
      1. 33.4.1 AES Low-Level Programming Models
        1. 33.4.1.1 Global Initialization
        2. 33.4.1.2 AES Operating Modes Configuration
        3. 33.4.1.3 AES Mode Configurations
        4. 33.4.1.4 AES Events Servicing
    5. 33.5 Software
      1. 33.5.1 AES Examples
        1. 33.5.1.1 AES ECB Encryption Example
        2. 33.5.1.2 AES ECB De-cryption Example
        3. 33.5.1.3 AES GCM Encryption Example
        4. 33.5.1.4 AES GCM Decryption Example
    6. 33.6 AES Registers
      1. 33.6.1 AES Base Address Table
      2. 33.6.2 AES_REGS Registers
      3. 33.6.3 AES_SS_REGS Registers
      4. 33.6.4 Register to Driverlib Function Mapping
        1. 33.6.4.1 AES Registers to Driverlib Functions
        2. 33.6.4.2 AES_SS Registers to Driverlib Functions
  36. 34Embedded Pattern Generator (EPG)
    1. 34.1 Introduction
      1. 34.1.1 Features
      2. 34.1.2 EPG Block Diagram
      3. 34.1.3 EPG Related Collateral
    2. 34.2 Clock Generator Modules
      1. 34.2.1 DCLK (50% duty cycle clock)
      2. 34.2.2 Clock Stop
    3. 34.3 Signal Generator Module
    4. 34.4 EPG Peripheral Signal Mux Selection
    5. 34.5 EPG Example Use Cases
      1. 34.5.1 EPG Example: Synchronous Clocks with Offset
        1. 34.5.1.1 Synchronous Clocks with Offset Register Configuration
      2. 34.5.2 EPG Example: Serial Data Bit Stream (LSB first)
        1. 34.5.2.1 Serial Data Bit Stream (LSB first) Register Configuration
      3. 34.5.3 EPG Example: Serial Data Bit Stream (MSB first)
        1. 34.5.3.1 Serial Data Bit Stream (MSB first) Register Configuration
    6. 34.6 EPG Interrupt
    7. 34.7 Software
      1. 34.7.1 EPG Examples
        1. 34.7.1.1 EPG Generating Synchronous Clocks
        2. 34.7.1.2 EPG Generating Two Offset Clocks
        3. 34.7.1.3 EPG Generating Two Offset Clocks With SIGGEN
        4. 34.7.1.4 EPG Generate Serial Data
        5. 34.7.1.5 EPG Generate Serial Data Shift Mode
    8. 34.8 EPG Registers
      1. 34.8.1 EPG Base Address Table
      2. 34.8.2 EPG_REGS Registers
      3. 34.8.3 EPG_MUX_REGS Registers
      4. 34.8.4 EPG Registers to Driverlib Functions
  37. 35Revision History

MEM_CFG_REGS Registers

Table 3-140 lists the memory-mapped registers for the MEM_CFG_REGS registers. All register offset addresses not listed in Table 3-140 should be considered as reserved locations and the register contents should not be modified.

Table 3-140 MEM_CFG_REGS Registers
OffsetAcronymRegister NameWrite ProtectionSection
0hDxLOCKDedicated RAM Config Lock RegisterEALLOWGo
2hDxCOMMITDedicated RAM Config Lock Commit RegisterEALLOWGo
8hDxACCPROT0Dedicated RAM Config RegisterEALLOWGo
10hDxTESTDedicated RAM TEST RegisterGo
12hDxINITDedicated RAM Init RegisterEALLOWGo
14hDxINITDONEDedicated RAM InitDone Status RegisterGo
16hDxRAMTEST_LOCKLock register to Dx RAM TEST registersGo
20hLSxLOCKLocal Shared RAM Config Lock RegisterEALLOWGo
22hLSxCOMMITLocal Shared RAM Config Lock Commit RegisterEALLOWGo
24hLSxMSELLocal Shared RAM Master Sel RegisterEALLOWGo
26hLSxCLAPGMLocal Shared RAM Prog/Exe control RegisterEALLOWGo
28hLSxACCPROT0Local Shared RAM Config Register 0EALLOWGo
2AhLSxACCPROT1Local Shared RAM Config Register 1EALLOWGo
30hLSxTESTLocal Shared RAM TEST RegisterGo
32hLSxINITLocal Shared RAM Init RegisterEALLOWGo
34hLSxINITDONELocal Shared RAM InitDone Status RegisterGo
36hLSxRAMTEST_LOCKLock register to LSx RAM TEST registersGo
40hGSxLOCKGlobal Shared RAM Config Lock RegisterEALLOWGo
42hGSxCOMMITGlobal Shared RAM Config Lock Commit RegisterEALLOWGo
48hGSxACCPROT0Global Shared RAM Config Register 0EALLOWGo
50hGSxTESTGlobal Shared RAM TEST RegisterGo
52hGSxINITGlobal Shared RAM Init RegisterEALLOWGo
54hGSxINITDONEGlobal Shared RAM InitDone Status RegisterGo
56hGSxRAMTEST_LOCKLock register to GSx RAM TEST registersGo
60hMSGxLOCKMessage RAM Config Lock RegisterEALLOWGo
62hMSGxCOMMITMessage RAM Config Lock Commit RegisterEALLOWGo
70hMSGxTESTMessage RAM TEST RegisterGo
72hMSGxINITMessage RAM Init RegisterEALLOWGo
74hMSGxINITDONEMessage RAM InitDone Status RegisterGo
76hMSGxRAMTEST_LOCKLock register for MSGx RAM TEST RegisterGo
A0hROM_LOCKROM Config Lock RegisterGo
A2hROM_TESTROM TEST RegisterGo
A4hROM_FORCE_ERRORROM Force Error registerGo

Complex bit access types are encoded to fit into small table cells. Table 3-141 shows the codes that are used for access types in this section.

Table 3-141 MEM_CFG_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

3.16.8.1 DxLOCK Register (Offset = 0h) [Reset = 00000000h]

DxLOCK is shown in Figure 3-130 and described in Table 3-142.

Return to the Summary Table.

Dedicated RAM Config Lock Register

Figure 3-130 DxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESERVEDRESERVEDLOCK_M1LOCK_M0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-142 DxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1LOCK_M1R/W0hLocks the write to access protection, master select, initialization control and test register fields for M1 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

0LOCK_M0R/W0hLocks the write to access protection, master select, initialization control and test register fields for M0 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

3.16.8.2 DxCOMMIT Register (Offset = 2h) [Reset = 00000000h]

DxCOMMIT is shown in Figure 3-131 and described in Table 3-143.

Return to the Summary Table.

Dedicated RAM Config Lock Commit Register

Figure 3-131 DxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESERVEDRESERVEDCOMMIT_M1COMMIT_M0
R-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-143 DxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3RESERVEDR/WSonce0hReserved
2RESERVEDR/WSonce0hReserved
1COMMIT_M1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for M1 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in DxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

0COMMIT_M0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for M0 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in DxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

3.16.8.3 DxACCPROT0 Register (Offset = 8h) [Reset = 00000000h]

DxACCPROT0 is shown in Figure 3-132 and described in Table 3-144.

Return to the Summary Table.

Dedicated RAM Config Register

Figure 3-132 DxACCPROT0 Register
3130292827262524
RESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDCPUWRPROT_M1FETCHPROT_M1
R-0hR/W-0hR/W-0h
76543210
RESERVEDCPUWRPROT_M0FETCHPROT_M0
R-0hR/W-0hR/W-0h
Table 3-144 DxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR0hReserved
25RESERVEDR/W0hReserved
24RESERVEDR/W0hReserved
23-18RESERVEDR0hReserved
17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15-10RESERVEDR0hReserved
9CPUWRPROT_M1R/W0hCPU WR Protection For M1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are block.

Reset type: SYSRSn

8FETCHPROT_M1R/W0hFetch Protection For M1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-2RESERVEDR0hReserved
1CPUWRPROT_M0R/W0hCPU WR Protection For M0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are block.

Reset type: SYSRSn

0FETCHPROT_M0R/W0hFetch Protection For M0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.8.4 DxTEST Register (Offset = 10h) [Reset = 00000000h]

DxTEST is shown in Figure 3-133 and described in Table 3-145.

Return to the Summary Table.

Dedicated RAM TEST Register

Figure 3-133 DxTEST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESERVEDTEST_M1TEST_M0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-145 DxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7-6RESERVEDR/W0hReserved
5-4RESERVEDR/W0hReserved
3-2TEST_M1R/W0hSelects the defferent modes for M1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to ECC bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

1-0TEST_M0R/W0hSelects the defferent modes for M0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to ECC bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3.16.8.5 DxINIT Register (Offset = 12h) [Reset = 00000000h]

DxINIT is shown in Figure 3-134 and described in Table 3-146.

Return to the Summary Table.

Dedicated RAM Init Register

Figure 3-134 DxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESERVEDRESERVEDINIT_M1INIT_M0
R-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-146 DxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3RESERVEDR-0/W1S0hReserved
2RESERVEDR-0/W1S0hReserved
1INIT_M1R-0/W1S0hRAM Initialization control for M1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_M0R-0/W1S0hRAM Initialization control for M0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.8.6 DxINITDONE Register (Offset = 14h) [Reset = 00000000h]

DxINITDONE is shown in Figure 3-135 and described in Table 3-147.

Return to the Summary Table.

Dedicated RAM InitDone Status Register

Figure 3-135 DxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESERVEDRESERVEDINITDONE_M1INITDONE_M0
R-0hR-0hR-0hR-0hR-0h
Table 3-147 DxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3RESERVEDR0hReserved
2RESERVEDR0hReserved
1INITDONE_M1R0hRAM Initialization status for M1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization has completed.

Reset type: SYSRSn

0INITDONE_M0R0hRAM Initialization status for M0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3.16.8.7 DxRAMTEST_LOCK Register (Offset = 16h) [Reset = 00000000h]

DxRAMTEST_LOCK is shown in Figure 3-136 and described in Table 3-148.

Return to the Summary Table.

Lock register to Dx RAM TEST registers

Figure 3-136 DxRAMTEST_LOCK Register
31302928272625242322212019181716
KEY
R-0/W-0h
1514131211109876543210
RESERVEDRESERVEDRESERVEDM1M0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-148 DxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-4RESERVEDR0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1M1R/W0h0: Allows writes to DxTEST.TEST_M1 field.
1: Blocks writes to DxTEST.TEST_M1 field

Reset type: SYSRSn

0M0R/W0h0: Allows writes to DxTEST.TEST_M0 field.
1: Blocks writes to DxTEST.TEST_M0 field

Reset type: SYSRSn

3.16.8.8 LSxLOCK Register (Offset = 20h) [Reset = 00000000h]

LSxLOCK is shown in Figure 3-137 and described in Table 3-149.

Return to the Summary Table.

Local Shared RAM Config Lock Register

Figure 3-137 LSxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
LOCK_LS7LOCK_LS6LOCK_LS5LOCK_LS4LOCK_LS3LOCK_LS2LOCK_LS1LOCK_LS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-149 LSxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7LOCK_LS7R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS7 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

6LOCK_LS6R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS6 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

5LOCK_LS5R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS5 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

4LOCK_LS4R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS4 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

3LOCK_LS3R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS3 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

2LOCK_LS2R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS2 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

1LOCK_LS1R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS1 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

0LOCK_LS0R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS0 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

3.16.8.9 LSxCOMMIT Register (Offset = 22h) [Reset = 00000000h]

LSxCOMMIT is shown in Figure 3-138 and described in Table 3-150.

Return to the Summary Table.

Local Shared RAM Config Lock Commit Register

Figure 3-138 LSxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
COMMIT_LS7COMMIT_LS6COMMIT_LS5COMMIT_LS4COMMIT_LS3COMMIT_LS2COMMIT_LS1COMMIT_LS0
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-150 LSxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7COMMIT_LS7R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS7 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

6COMMIT_LS6R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS6 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

5COMMIT_LS5R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS5 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

4COMMIT_LS4R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS4 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

3COMMIT_LS3R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS3 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

2COMMIT_LS2R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS2 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

1COMMIT_LS1R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS1 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

0COMMIT_LS0R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS0 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

3.16.8.10 LSxMSEL Register (Offset = 24h) [Reset = 00000000h]

LSxMSEL is shown in Figure 3-139 and described in Table 3-151.

Return to the Summary Table.

Local Shared RAM Master Sel Register

Figure 3-139 LSxMSEL Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
MSEL_LS7MSEL_LS6MSEL_LS5MSEL_LS4
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
MSEL_LS3MSEL_LS2MSEL_LS1MSEL_LS0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-151 LSxMSEL Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-14MSEL_LS7R/W0hMaster Select for LS7 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

13-12MSEL_LS6R/W0hMaster Select for LS6 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

11-10MSEL_LS5R/W0hMaster Select for LS5 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

9-8MSEL_LS4R/W0hMaster Select for LS4 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

7-6MSEL_LS3R/W0hMaster Select for LS3 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

5-4MSEL_LS2R/W0hMaster Select for LS2 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

3-2MSEL_LS1R/W0hMaster Select for LS1 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

1-0MSEL_LS0R/W0hMaster Select for LS0 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

3.16.8.11 LSxCLAPGM Register (Offset = 26h) [Reset = 00000000h]

LSxCLAPGM is shown in Figure 3-140 and described in Table 3-152.

Return to the Summary Table.

Local Shared RAM Prog/Exe control Register

Figure 3-140 LSxCLAPGM Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
CLAPGM_LS7CLAPGM_LS6CLAPGM_LS5CLAPGM_LS4CLAPGM_LS3CLAPGM_LS2CLAPGM_LS1CLAPGM_LS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-152 LSxCLAPGM Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7CLAPGM_LS7R/W0hSelects LS7 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

6CLAPGM_LS6R/W0hSelects LS6 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

5CLAPGM_LS5R/W0hSelects LS5 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

4CLAPGM_LS4R/W0hSelects LS4 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

3CLAPGM_LS3R/W0hSelects LS3 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

2CLAPGM_LS2R/W0hSelects LS2 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

1CLAPGM_LS1R/W0hSelects LS1 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

0CLAPGM_LS0R/W0hSelects LS0 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

3.16.8.12 LSxACCPROT0 Register (Offset = 28h) [Reset = 00000000h]

LSxACCPROT0 is shown in Figure 3-141 and described in Table 3-153.

Return to the Summary Table.

Local Shared RAM Config Register 0

Figure 3-141 LSxACCPROT0 Register
3130292827262524
RESERVEDCPUWRPROT_LS3FETCHPROT_LS3
R-0hR/W-0hR/W-0h
2322212019181716
RESERVEDCPUWRPROT_LS2FETCHPROT_LS2
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDCPUWRPROT_LS1FETCHPROT_LS1
R-0hR/W-0hR/W-0h
76543210
RESERVEDCPUWRPROT_LS0FETCHPROT_LS0
R-0hR/W-0hR/W-0h
Table 3-153 LSxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR0hReserved
25CPUWRPROT_LS3R/W0hCPU WR Protection For LS3 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_LS3R/W0hFetch Protection For LS3 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-18RESERVEDR0hReserved
17CPUWRPROT_LS2R/W0hCPU WR Protection For LS2 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_LS2R/W0hFetch Protection For LS2 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-10RESERVEDR0hReserved
9CPUWRPROT_LS1R/W0hCPU WR Protection For LS1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_LS1R/W0hFetch Protection For LS1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-2RESERVEDR0hReserved
1CPUWRPROT_LS0R/W0hCPU WR Protection For LS0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_LS0R/W0hFetch Protection For LS0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.8.13 LSxACCPROT1 Register (Offset = 2Ah) [Reset = 00000000h]

LSxACCPROT1 is shown in Figure 3-142 and described in Table 3-154.

Return to the Summary Table.

Local Shared RAM Config Register 1

Figure 3-142 LSxACCPROT1 Register
3130292827262524
RESERVEDCPUWRPROT_LS7FETCHPROT_LS7
R-0hR/W-0hR/W-0h
2322212019181716
RESERVEDCPUWRPROT_LS6FETCHPROT_LS6
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDCPUWRPROT_LS5FETCHPROT_LS5
R-0hR/W-0hR/W-0h
76543210
RESERVEDCPUWRPROT_LS4FETCHPROT_LS4
R-0hR/W-0hR/W-0h
Table 3-154 LSxACCPROT1 Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR0hReserved
25CPUWRPROT_LS7R/W0hCPU WR Protection For LS7 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_LS7R/W0hFetch Protection For LS7 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-18RESERVEDR0hReserved
17CPUWRPROT_LS6R/W0hCPU WR Protection For LS6 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_LS6R/W0hFetch Protection For LS6 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-10RESERVEDR0hReserved
9CPUWRPROT_LS5R/W0hCPU WR Protection For LS5 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_LS5R/W0hFetch Protection For LS5 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-2RESERVEDR0hReserved
1CPUWRPROT_LS4R/W0hCPU WR Protection For LS4 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_LS4R/W0hFetch Protection For LS4 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.8.14 LSxTEST Register (Offset = 30h) [Reset = 00000000h]

LSxTEST is shown in Figure 3-143 and described in Table 3-155.

Return to the Summary Table.

Local Shared RAM TEST Register

Figure 3-143 LSxTEST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
TEST_LS7TEST_LS6TEST_LS5TEST_LS4
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
TEST_LS3TEST_LS2TEST_LS1TEST_LS0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-155 LSxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-14TEST_LS7R/W0hSelects the defferent modes for LS7 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

13-12TEST_LS6R/W0hSelects the defferent modes for LS6 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

11-10TEST_LS5R/W0hSelects the defferent modes for LS5 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

9-8TEST_LS4R/W0hSelects the defferent modes for LS4 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

7-6TEST_LS3R/W0hSelects the defferent modes for LS3 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

5-4TEST_LS2R/W0hSelects the defferent modes for LS2 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3-2TEST_LS1R/W0hSelects the defferent modes for LS1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

1-0TEST_LS0R/W0hSelects the defferent modes for LS0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3.16.8.15 LSxINIT Register (Offset = 32h) [Reset = 00000000h]

LSxINIT is shown in Figure 3-144 and described in Table 3-156.

Return to the Summary Table.

Local Shared RAM Init Register

Figure 3-144 LSxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
INIT_LS7INIT_LS6INIT_LS5INIT_LS4INIT_LS3INIT_LS2INIT_LS1INIT_LS0
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-156 LSxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7INIT_LS7R-0/W1S0hRAM Initialization control for LS7 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

6INIT_LS6R-0/W1S0hRAM Initialization control for LS6 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

5INIT_LS5R-0/W1S0hRAM Initialization control for LS5 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

4INIT_LS4R-0/W1S0hRAM Initialization control for LS4 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3INIT_LS3R-0/W1S0hRAM Initialization control for LS3 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

2INIT_LS2R-0/W1S0hRAM Initialization control for LS2 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_LS1R-0/W1S0hRAM Initialization control for LS1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_LS0R-0/W1S0hRAM Initialization control for LS0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.8.16 LSxINITDONE Register (Offset = 34h) [Reset = 00000000h]

LSxINITDONE is shown in Figure 3-145 and described in Table 3-157.

Return to the Summary Table.

Local Shared RAM InitDone Status Register

Figure 3-145 LSxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
INITDONE_LS7INITDONE_LS6INITDONE_LS5INITDONE_LS4INITDONE_LS3INITDONE_LS2INITDONE_LS1INITDONE_LS0
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 3-157 LSxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7INITDONE_LS7R0hRAM Initialization status for LS7 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

6INITDONE_LS6R0hRAM Initialization status for LS6 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

5INITDONE_LS5R0hRAM Initialization status for LS5 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

4INITDONE_LS4R0hRAM Initialization status for LS4 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3INITDONE_LS3R0hRAM Initialization status for LS3 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

2INITDONE_LS2R0hRAM Initialization status for LS2 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

1INITDONE_LS1R0hRAM Initialization status for LS1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

0INITDONE_LS0R0hRAM Initialization status for LS0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3.16.8.17 LSxRAMTEST_LOCK Register (Offset = 36h) [Reset = 00000000h]

LSxRAMTEST_LOCK is shown in Figure 3-146 and described in Table 3-158.

Return to the Summary Table.

Lock register to LSx RAM TEST registers

Figure 3-146 LSxRAMTEST_LOCK Register
31302928272625242322212019181716
KEY
R-0/W-0h
1514131211109876543210
RESERVEDLS7LS6LS5LS4LS3LS2LS1LS0
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-158 LSxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-8RESERVEDR0hReserved
7LS7R/W0h0: Allows writes to LSxTEST.TEST_LS7 field.
1: Blocks writes to LSxTEST.TEST_LS7 field.

Reset type: SYSRSn

6LS6R/W0h0: Allows writes to LSxTEST.TEST_LS6 field.
1: Blocks writes to LSxTEST.TEST_LS6 field.

Reset type: SYSRSn

5LS5R/W0h0: Allows writes to LSxTEST.TEST_LS5 field.
1: Blocks writes to LSxTEST.TEST_LS5 field.

Reset type: SYSRSn

4LS4R/W0h0: Allows writes to LSxTEST.TEST_LS4 field.
1: Blocks writes to LSxTEST.TEST_LS4 field.

Reset type: SYSRSn

3LS3R/W0h0: Allows writes to LSxTEST.TEST_LS3 field.
1: Blocks writes to LSxTEST.TEST_LS3 field.

Reset type: SYSRSn

2LS2R/W0h0: Allows writes to LSxTEST.TEST_LS2 field.
1: Blocks writes to LSxTEST.TEST_LS2 field.

Reset type: SYSRSn

1LS1R/W0h0: Allows writes to LSxTEST.TEST_LS1 field.
1: Blocks writes to LSxTEST.TEST_LS1 field.

Reset type: SYSRSn

0LS0R/W0h0: Allows writes to LSxTEST.TEST_LS0 field.
1: Blocks writes to LSxTEST.TEST_LS0 field.

Reset type: SYSRSn

3.16.8.18 GSxLOCK Register (Offset = 40h) [Reset = 00000000h]

GSxLOCK is shown in Figure 3-147 and described in Table 3-159.

Return to the Summary Table.

Global Shared RAM Config Lock Register

Figure 3-147 GSxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDLOCK_GS3LOCK_GS2LOCK_GS1LOCK_GS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-159 GSxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15RESERVEDR/W0hReserved
14RESERVEDR/W0hReserved
13RESERVEDR/W0hReserved
12RESERVEDR/W0hReserved
11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3LOCK_GS3R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS3 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

2LOCK_GS2R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS2 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

1LOCK_GS1R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS1 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

0LOCK_GS0R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS0 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed.
1: Write to ACCPROT, INIT and MSEL fields are blocked.

Reset type: SYSRSn

3.16.8.19 GSxCOMMIT Register (Offset = 42h) [Reset = 00000000h]

GSxCOMMIT is shown in Figure 3-148 and described in Table 3-160.

Return to the Summary Table.

Global Shared RAM Config Lock Commit Register

Figure 3-148 GSxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDCOMMIT_GS3COMMIT_GS2COMMIT_GS1COMMIT_GS0
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-160 GSxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15RESERVEDR/WSonce0hReserved
14RESERVEDR/WSonce0hReserved
13RESERVEDR/WSonce0hReserved
12RESERVEDR/WSonce0hReserved
11RESERVEDR/WSonce0hReserved
10RESERVEDR/WSonce0hReserved
9RESERVEDR/WSonce0hReserved
8RESERVEDR/WSonce0hReserved
7RESERVEDR/WSonce0hReserved
6RESERVEDR/WSonce0hReserved
5RESERVEDR/WSonce0hReserved
4RESERVEDR/WSonce0hReserved
3COMMIT_GS3R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS3 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

2COMMIT_GS2R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS2 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

1COMMIT_GS1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS1 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

0COMMIT_GS0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS0 RAM:
0: Write to ACCPROT, INIT and MSEL fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and MSEL fields are permanently blocked.

Reset type: SYSRSn

3.16.8.20 GSxACCPROT0 Register (Offset = 48h) [Reset = 00000000h]

GSxACCPROT0 is shown in Figure 3-149 and described in Table 3-161.

Return to the Summary Table.

Global Shared RAM Config Register 0

Figure 3-149 GSxACCPROT0 Register
3130292827262524
RESERVEDHICWRPROT_GS3DMAWRPROT_GS3CPUWRPROT_GS3FETCHPROT_GS3
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDHICWRPROT_GS2DMAWRPROT_GS2CPUWRPROT_GS2FETCHPROT_GS2
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDHICWRPROT_GS1DMAWRPROT_GS1CPUWRPROT_GS1FETCHPROT_GS1
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDHICWRPROT_GS0DMAWRPROT_GS0CPUWRPROT_GS0FETCHPROT_GS0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-161 GSxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-28RESERVEDR0hReserved
27HICWRPROT_GS3R/W0hHICA WR Protection For GS0 RAM:
0: HICA Writes are allowed.
1: HICA Writes are blocked.

Reset type: SYSRSn

26DMAWRPROT_GS3R/W0hDMA WR Protection For GS3 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

25CPUWRPROT_GS3R/W0hCPU WR Protection For GS3 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_GS3R/W0hFetch Protection For GS3 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-20RESERVEDR0hReserved
19HICWRPROT_GS2R/W0hHICA WR Protection For GS0 RAM:
0: HICA Writes are allowed.
1: HICA Writes are blocked.

Reset type: SYSRSn

18DMAWRPROT_GS2R/W0hDMA WR Protection For GS2 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

17CPUWRPROT_GS2R/W0hCPU WR Protection For GS2 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_GS2R/W0hFetch Protection For GS2 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-12RESERVEDR0hReserved
11HICWRPROT_GS1R/W0hHICA WR Protection For GS0 RAM:
0: HICA Writes are allowed.
1: HICA Writes are blocked.

Reset type: SYSRSn

10DMAWRPROT_GS1R/W0hDMA WR Protection For GS1 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

9CPUWRPROT_GS1R/W0hCPU WR Protection For GS1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_GS1R/W0hFetch Protection For GS1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-4RESERVEDR0hReserved
3HICWRPROT_GS0R/W0hHICA WR Protection For GS0 RAM:
0: HICA Writes are allowed.
1: HICA Writes are blocked.

Reset type: SYSRSn

2DMAWRPROT_GS0R/W0hDMA WR Protection For GS0 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_GS0R/W0hCPU WR Protection For GS0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_GS0R/W0hFetch Protection For GS0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.8.21 GSxTEST Register (Offset = 50h) [Reset = 00000000h]

GSxTEST is shown in Figure 3-150 and described in Table 3-162.

Return to the Summary Table.

Global Shared RAM TEST Register

Figure 3-150 GSxTEST Register
3130292827262524
RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
TEST_GS3TEST_GS2TEST_GS1TEST_GS0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-162 GSxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-30RESERVEDR/W0hReserved
29-28RESERVEDR/W0hReserved
27-26RESERVEDR/W0hReserved
25-24RESERVEDR/W0hReserved
23-22RESERVEDR/W0hReserved
21-20RESERVEDR/W0hReserved
19-18RESERVEDR/W0hReserved
17-16RESERVEDR/W0hReserved
15-14RESERVEDR/W0hReserved
13-12RESERVEDR/W0hReserved
11-10RESERVEDR/W0hReserved
9-8RESERVEDR/W0hReserved
7-6TEST_GS3R/W0hSelects the defferent modes for GS3 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

5-4TEST_GS2R/W0hSelects the defferent modes for GS2 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3-2TEST_GS1R/W0hSelects the defferent modes for GS1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

1-0TEST_GS0R/W0hSelects the defferent modes for GS0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3.16.8.22 GSxINIT Register (Offset = 52h) [Reset = 00000000h]

GSxINIT is shown in Figure 3-151 and described in Table 3-163.

Return to the Summary Table.

Global Shared RAM Init Register

Figure 3-151 GSxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDINIT_GS3INIT_GS2INIT_GS1INIT_GS0
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-163 GSxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15RESERVEDR-0/W1S0hReserved
14RESERVEDR-0/W1S0hReserved
13RESERVEDR-0/W1S0hReserved
12RESERVEDR-0/W1S0hReserved
11RESERVEDR-0/W1S0hReserved
10RESERVEDR-0/W1S0hReserved
9RESERVEDR-0/W1S0hReserved
8RESERVEDR-0/W1S0hReserved
7RESERVEDR-0/W1S0hReserved
6RESERVEDR-0/W1S0hReserved
5RESERVEDR-0/W1S0hReserved
4RESERVEDR-0/W1S0hReserved
3INIT_GS3R-0/W1S0hRAM Initialization control for GS3 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

2INIT_GS2R-0/W1S0hRAM Initialization control for GS2 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_GS1R-0/W1S0hRAM Initialization control for GS1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_GS0R-0/W1S0hRAM Initialization control for GS0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.8.23 GSxINITDONE Register (Offset = 54h) [Reset = 00000000h]

GSxINITDONE is shown in Figure 3-152 and described in Table 3-164.

Return to the Summary Table.

Global Shared RAM InitDone Status Register

Figure 3-152 GSxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDINITDONE_GS3INITDONE_GS2INITDONE_GS1INITDONE_GS0
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 3-164 GSxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15RESERVEDR0hReserved
14RESERVEDR0hReserved
13RESERVEDR0hReserved
12RESERVEDR0hReserved
11RESERVEDR0hReserved
10RESERVEDR0hReserved
9RESERVEDR0hReserved
8RESERVEDR0hReserved
7RESERVEDR0hReserved
6RESERVEDR0hReserved
5RESERVEDR0hReserved
4RESERVEDR0hReserved
3INITDONE_GS3R0hRAM Initialization status for GS3 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

2INITDONE_GS2R0hRAM Initialization status for GS2 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

1INITDONE_GS1R0hRAM Initialization status for GS1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

0INITDONE_GS0R0hRAM Initialization status for GS0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3.16.8.24 GSxRAMTEST_LOCK Register (Offset = 56h) [Reset = 00000000h]

GSxRAMTEST_LOCK is shown in Figure 3-153 and described in Table 3-165.

Return to the Summary Table.

Lock register to GSx RAM TEST registers

Figure 3-153 GSxRAMTEST_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDGS3GS2GS1GS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-165 GSxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15RESERVEDR/W0hReserved
14RESERVEDR/W0hReserved
13RESERVEDR/W0hReserved
12RESERVEDR/W0hReserved
11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6RESERVEDR/W0hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3GS3R/W0h0: Allows writes to GSxTEST.TEST_GS3 field.
1: Blocks writes to GSxTEST.TEST_GS3 field.

Reset type: SYSRSn

2GS2R/W0h0: Allows writes to GSxTEST.TEST_GS2 field.
1: Blocks writes to GSxTEST.TEST_GS2 field.

Reset type: SYSRSn

1GS1R/W0h0: Allows writes to GSxTEST.TEST_GS1 field.
1: Blocks writes to GSxTEST.TEST_GS1 field.

Reset type: SYSRSn

0GS0R/W0h0: Allows writes to GSxTEST.TEST_GS0 field.
1: Blocks writes to GSxTEST.TEST_GS0 field.

Reset type: SYSRSn

3.16.8.25 MSGxLOCK Register (Offset = 60h) [Reset = 00000000h]

MSGxLOCK is shown in Figure 3-154 and described in Table 3-166.

Return to the Summary Table.

Message RAM Config Lock Register

Figure 3-154 MSGxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDLOCK_DMATOCLA1LOCK_CLA1TODMARESERVEDRESERVEDLOCK_CLA1TOCPULOCK_CPUTOCLA1RESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-166 MSGxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6LOCK_DMATOCLA1R/W0hLocks the write to access protection, master select, initialization control and test for DMATOCLA1 RAM:
0: Write to TEST, INIT fields are allowed.
1: Write to TEST, INIT fields are blocked.

Reset type: SYSRSn

5LOCK_CLA1TODMAR/W0hLocks the write to access protection, master select, initialization control and test for CLA1TODMA RAM:
0: Write to TEST, INIT fields are allowed.
1: Write to TEST, INIT fields are blocked.

Reset type: SYSRSn

4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2LOCK_CLA1TOCPUR/W0hLocks the write to access protection, master select, initialization control and test register fields for CLA1TOCPU RAM:
0: Write to TEST, INIT fields are allowed.
1: Write to TEST, INIT fields are blocked.

Reset type: SYSRSn

1LOCK_CPUTOCLA1R/W0hLocks the write to access protection, master select, initialization control and test register fields for CPUTOCLA1 RAM:
0: Write to TEST, INIT fields are allowed.
1: Write to TEST, INIT fields are blocked.

Reset type: SYSRSn

0RESERVEDR/W0hReserved

3.16.8.26 MSGxCOMMIT Register (Offset = 62h) [Reset = 00000000h]

MSGxCOMMIT is shown in Figure 3-155 and described in Table 3-167.

Return to the Summary Table.

Message RAM Config Lock Commit Register

Figure 3-155 MSGxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
76543210
RESERVEDCOMMIT_DMATOCLA1COMMIT_CLA1TODMARESERVEDRESERVEDCOMMIT_CLA1TOCPUCOMMIT_CPUTOCLA1RESERVED
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-167 MSGxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11RESERVEDR/WSonce0hReserved
10RESERVEDR/WSonce0hReserved
9RESERVEDR/WSonce0hReserved
8RESERVEDR/WSonce0hReserved
7RESERVEDR/WSonce0hReserved
6COMMIT_DMATOCLA1R/WSonce0hLocks the write to access protection, master select, initialization control and test register fields for DMATOCLA1 RAM:
0: Write to TEST, INIT fields are allowed based on value of corresponding lock field in MSGxLOCK register.
1: Write to TEST, INIT fields are permanently blocked.

Reset type: SYSRSn

5COMMIT_CLA1TODMAR/WSonce0hLocks the write to access protection, master select, initialization control and test register fields for CLA1TODMA RAM:
0: Write to TEST, INIT fields are allowed based on value of corresponding lock field in MSGxLOCK register.
1: Write to TEST, INIT fields are permanently blocked.

Reset type: SYSRSn

4RESERVEDR/WSonce0hReserved
3RESERVEDR/WSonce0hReserved
2COMMIT_CLA1TOCPUR/WSonce0hLocks the write to access protection, master select, initialization control and test register fields for CLA1TOCPU RAM:
0: Write to TEST, INIT fields are allowed based on value of corresponding lock field in MSGxLOCK register.
1: Write to TEST, INIT fields are permanently blocked.

Reset type: SYSRSn

1COMMIT_CPUTOCLA1R/WSonce0hLocks the write to access protection, master select, initialization control and test register fields for CPUTOCLA1 RAM:
0: Write to TEST, INIT fields are allowed based on value of corresponding lock field in MSGxLOCK register.
1: Write to TEST, INIT fields are permanently blocked.

Reset type: SYSRSn

0RESERVEDR/WSonce0hReserved

3.16.8.27 MSGxTEST Register (Offset = 70h) [Reset = 00000000h]

MSGxTEST is shown in Figure 3-156 and described in Table 3-168.

Return to the Summary Table.

Message RAM TEST Register

Figure 3-156 MSGxTEST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDTEST_DMATOCLA1TEST_CLA1TODMARESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDTEST_CLA1TOCPUTEST_CPUTOCLA1RESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-168 MSGxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-24RESERVEDR0hReserved
23-22RESERVEDR/W0hReserved
21-20RESERVEDR/W0hReserved
19-18RESERVEDR/W0hReserved
17-16RESERVEDR/W0hReserved
15-14RESERVEDR/W0hReserved
13-12TEST_DMATOCLA1R/W0hSelects the defferent modes for DMATOCLA1 MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

11-10TEST_CLA1TODMAR/W0hSelects the defferent modes for CLA1TODMA MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

9-8RESERVEDR/W0hReserved
7-6RESERVEDR/W0hReserved
5-4TEST_CLA1TOCPUR/W0hSelects the defferent modes for CLA1TOCPU MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3-2TEST_CPUTOCLA1R/W0hSelects the defferent modes for CPUTOCLA1 MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/NMI is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

1-0RESERVEDR/W0hReserved

3.16.8.28 MSGxINIT Register (Offset = 72h) [Reset = 00000000h]

MSGxINIT is shown in Figure 3-157 and described in Table 3-169.

Return to the Summary Table.

Message RAM Init Register

Figure 3-157 MSGxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
76543210
RESERVEDINIT_DMATOCLA1INIT_CLA1TODMARESERVEDRESERVEDINIT_CLA1TOCPUINIT_CPUTOCLA1RESERVED
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-169 MSGxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11RESERVEDR-0/W1S0hReserved
10RESERVEDR-0/W1S0hReserved
9RESERVEDR-0/W1S0hReserved
8RESERVEDR-0/W1S0hReserved
7RESERVEDR-0/W1S0hReserved
6INIT_DMATOCLA1R-0/W1S0hRAM Initialization control for DMATOCLA1 MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

5INIT_CLA1TODMAR-0/W1S0hRAM Initialization control for CLA1TODMA MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

4RESERVEDR-0/W1S0hReserved
3RESERVEDR-0/W1S0hReserved
2INIT_CLA1TOCPUR-0/W1S0hRAM Initialization control for CLA1TOCPU MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_CPUTOCLA1R-0/W1S0hRAM Initialization control for CPUTOCLA1 MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0RESERVEDR-0/W1S0hReserved

3.16.8.29 MSGxINITDONE Register (Offset = 74h) [Reset = 00000000h]

MSGxINITDONE is shown in Figure 3-158 and described in Table 3-170.

Return to the Summary Table.

Message RAM InitDone Status Register

Figure 3-158 MSGxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0hR-0hR-0hR-0hR-0h
76543210
RESERVEDINITDONE_DMATOCLA1INITDONE_CLA1TODMARESERVEDRESERVEDINITDONE_CLA1TOCPUINITDONE_CPUTOCLA1RESERVED
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 3-170 MSGxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11RESERVEDR0hReserved
10RESERVEDR0hReserved
9RESERVEDR0hReserved
8RESERVEDR0hReserved
7RESERVEDR0hReserved
6INITDONE_DMATOCLA1R0hRAM Initialization status for DMATOCLA1 MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

5INITDONE_CLA1TODMAR0hRAM Initialization status for CLA1TODMA MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

4RESERVEDR0hReserved
3RESERVEDR0hReserved
2INITDONE_CLA1TOCPUR0hRAM Initialization status for CLA1TOCPU MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

1INITDONE_CPUTOCLA1R0hRAM Initialization status for CPUTOCLA1 MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

0RESERVEDR0hReserved

3.16.8.30 MSGxRAMTEST_LOCK Register (Offset = 76h) [Reset = 00000000h]

MSGxRAMTEST_LOCK is shown in Figure 3-159 and described in Table 3-171.

Return to the Summary Table.

Lock register for MSGx RAM TEST Register

Figure 3-159 MSGxRAMTEST_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMATOCLA1CLA1TODMARESERVEDRESERVEDCLA1TOCPUCPUTOCLA1RESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-171 MSGxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-12RESERVEDR/W0hReserved
11RESERVEDR/W0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7RESERVEDR/W0hReserved
6DMATOCLA1R/W0h0: Allows writes to MSGxTEST.TEST_DMATOCLA1 field
1: Blocks writes to MSGxTEST.TEST_DMATOCLA1 field

Reset type: SYSRSn

5CLA1TODMAR/W0h0: Allows writes to MSGxTEST.TEST_CLA1TODMA field
1: Blocks writes to MSGxTEST.TEST_CLA1TODMA field

Reset type: SYSRSn

4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2CLA1TOCPUR/W0h0: Allows writes to MSGxTEST.TEST_CLA1TOCPU field
1: Blocks writes to MSGxTEST.TEST_CLA1TOCPU field

Reset type: SYSRSn

1CPUTOCLA1R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCLA1 field
1: Blocks writes to MSGxTEST.TEST_CPUTOCLA1 field

Reset type: SYSRSn

0RESERVEDR/W0hReserved

3.16.8.31 ROM_LOCK Register (Offset = A0h) [Reset = 00000000h]

ROM_LOCK is shown in Figure 3-160 and described in Table 3-172.

Return to the Summary Table.

ROM Config Lock Register

Figure 3-160 ROM_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK_CLAPROGROMLOCK_CLADATAROMLOCK_SECUREROMLOCK_BOOTROM
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-172 ROM_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-4RESERVEDR0hReserved
3LOCK_CLAPROGROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of CLAPROGROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

2LOCK_CLADATAROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of CLADATAROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

1LOCK_SECUREROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of SECUREROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

0LOCK_BOOTROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of BOOTROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

3.16.8.32 ROM_TEST Register (Offset = A2h) [Reset = 00000000h]

ROM_TEST is shown in Figure 3-161 and described in Table 3-173.

Return to the Summary Table.

ROM TEST Register

Figure 3-161 ROM_TEST Register
3130292827262524
RESERVED
R/W-0h
2322212019181716
RESERVED
R/W-0h
15141312111098
RESERVED
R/W-0h
76543210
TEST_CLAPROGROMTEST_CLADATAROMTEST_SECUREROMTEST_BOOTROM
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-173 ROM_TEST Register Field Descriptions
BitFieldTypeResetDescription
31-8RESERVEDR/W0hReserved
7-6TEST_CLAPROGROMR/W0hSelects the different modes for CLAPROGROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

5-4TEST_CLADATAROMR/W0hSelects the different modes for CLADATAROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

3-2TEST_SECUREROMR/W0hSelects the different modes for SECUREROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

1-0TEST_BOOTROMR/W0hSelects the different modes for BOOTROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

3.16.8.33 ROM_FORCE_ERROR Register (Offset = A4h) [Reset = 00000000h]

ROM_FORCE_ERROR is shown in Figure 3-162 and described in Table 3-174.

Return to the Summary Table.

ROM Force Error register

Figure 3-162 ROM_FORCE_ERROR Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDFORCE_CLAPROGROM_ERRORFORCE_CLADATAROM_ERRORFORCE_SECUREROM_ERRORFORCE_BOOTROM_ERROR
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-174 ROM_FORCE_ERROR Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3FORCE_CLAPROGROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn

2FORCE_CLADATAROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn

1FORCE_SECUREROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn

0FORCE_BOOTROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn