ZHCSQI1A November   2022  – November 2023 TPS92622-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Power Supply (SUPPLY)
        1. 6.3.1.1 Power-On Reset (POR)
        2. 6.3.1.2 Suppply Current in Fault Mode
      2. 6.3.2  Enable and Shutdow(EN)
      3. 6.3.3  Constant-Current Output and Setting (INx)
      4. 6.3.4  Thermal Sharing Resistor (OUTx and RESx)
      5. 6.3.5  PWM Control (PWMx)
      6. 6.3.6  Supply Control
      7. 6.3.7  Diagnostics
        1. 6.3.7.1 LED Short-to-GND Detection
        2. 6.3.7.2 LED Open-Circuit Detection
        3. 6.3.7.3 LED Open-Circuit Detection Enable (DIAGEN)
        4. 6.3.7.4 Overtemperature Protection
        5. 6.3.7.5 Low Dropout Operation
      8. 6.3.8  FAULT Bus Output With One-Fails-All-Fail
      9. 6.3.9  FAULT Table
      10. 6.3.10 LED Fault Summary
      11. 6.3.11 IO Pins Inner Connection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)
      2. 6.4.2 Normal Operation V(SUPPLY) ≥ 4.5 V
      3. 6.4.3 Low-Voltage Dropout Operation
      4. 6.4.4 Fault Mode
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 BCM Controlled Rear Lamp With One-Fails-All-Fail Setup
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Independent PWM Controlled Rear Lamp By MCU
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 接收文档更新通知
    2. 8.2 支持资源
    3. 8.3 Trademarks
    4. 8.4 静电放电警告
    5. 8.5 术语表
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

PWM Control (PWMx)

The pulse width modulation (PWM) input of the TPS92622-Q1 functions as enable for the output current. When the voltage applied on the PWM pin is higher than VIH(PWM), the relevant output current is enabled. When the voltage applied on PWM pin is lower than VIL(PWM), the output current is disabled as well as the diagnostic features. Besides output current enable and disable function, the PWM input of TPS92622-Q1 also supports adjustment of the average current output for brightness control if the frequency of applied PWM signal is higher than 100 Hz, which is out of visible frequency range of human eyes. TI recommends a 200-Hz PWM signal with 1% to 100% duty cycle input for brightness control. Please refer to Figure 7-4 for typical PWM dimming application.

The TPS92622-Q1 device has two PWM input pins: PWM1, PWM2 to control each of current output channel independently. PWM1 input controls the output channel 1 for both OUT1 and RES1, PWM2 input controls the output channel 2 for both OUT2 and RES2. Figure 6-1 illustrates the timing for PWM input and current output.

GUID-20231106-SS0I-BJ9G-QG3D-5V3RGWNLXKPK-low.svg Figure 6-1 Power-On Sequence and PWM Dimming Timing

The detailed information and value of each time period in Figure 6-1 is described in TIMING section of the Electrical Characteristics.