ZHCSPB0B April   2023  – September 2025 LM5171-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
    7. 5.7 典型特性
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1  辅助电源和电压基准(VCC、VDD 和 VREF)
      2. 6.3.2  欠压锁定 (UVLO)
      3. 6.3.3  器件配置 (CFG)
      4. 6.3.4  高电压输入(HV1、HV2)
      5. 6.3.5  电流检测放大器
      6. 6.3.6  控制命令
        1. 6.3.6.1 通道使能命令(EN1、EN2)
        2. 6.3.6.2 方向命令(DIR1 和 DIR2)
        3. 6.3.6.3 通道电流设置命令(ISET1 和 ISET2)
      7. 6.3.7  通道电流监测器(IMON1、IMON2)
        1. 6.3.7.1 单个通道电流监测器
        2. 6.3.7.2 多相总电流监测
      8. 6.3.8  逐周期峰值电流限制 (IPK)
      9. 6.3.9  内部电流环路误差放大器
      10. 6.3.10 外部电压环路误差放大器
      11. 6.3.11 软启动、二极管仿真和强制 PWM 控制(SS/DEM1 和 SS/DEM2)
        1. 6.3.11.1 通过 SS/DEM 引脚进行 ISET 软启动控制
        2. 6.3.11.2 DEM 编程
        3. 6.3.11.3 FPWM 编程以及动态 FPWM 和 DEM 更改
      12. 6.3.12 栅极驱动输出、死区时间编程和自适应死区时间(HO1、HO2、LO1、LO2、DT/SD)
      13. 6.3.13 紧急锁存关断 (DT/SD)
      14. 6.3.14 PWM 比较器
      15. 6.3.15 振荡器 (OSC)
      16. 6.3.16 同步到外部时钟(SYNCI、SYNCO)
      17. 6.3.17 过压保护 (OVP)
      18. 6.3.18 多相配置(SYNCO、OPT)
        1. 6.3.18.1 多相星型配置
        2. 6.3.18.2 两相、三相或四相并行运行菊花链配置
        3. 6.3.18.3 六相或八相并行运行菊花链配置
      19. 6.3.19 热关断
    4. 6.4 器件功能模式
      1. 6.4.1 初始化模式
      2. 6.4.2 待机模式
      3. 6.4.3 电力输送模式
      4. 6.4.4 关断模式
      5. 6.4.5 锁存关断模式
  8. 寄存器
    1. 7.1 I2C 串行接口
    2. 7.2 I2C 总线运行
    3. 7.3 时钟延展
    4. 7.4 数据传输格式
    5. 7.5 从定义的寄存器地址进行单次读取
    6. 7.6 从定义的寄存器地址开始进行顺序读取
    7. 7.7 对定义的寄存器地址进行单次写入
    8. 7.8 从定义的寄存器地址开始进行顺序写入
    9. 7.9 REGFIELD 寄存器
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 小信号模型
        1. 8.1.1.1 电流环路小信号模型
        2. 8.1.1.2 电流环路补偿
        3. 8.1.1.3 电压环路小信号模型
        4. 8.1.1.4 电压环路补偿
    2. 8.2 PWM 转换为 ISET 引脚上的电压
    3. 8.3 ISET 钳位
    4. 8.4 动态死区时间调整
    5. 8.5 正确端接未使用的引脚
    6. 8.6 典型应用
      1. 8.6.1 60A、双相、48V 至 12V 双向转换器
        1. 8.6.1.1 设计要求
        2. 8.6.1.2 详细设计过程
          1. 8.6.1.2.1  确定占空比
          2. 8.6.1.2.2  振荡器编程 (OSC)
          3. 8.6.1.2.3  功率电感器、RMS 和峰值电流
          4. 8.6.1.2.4  电流检测 (RCS)
          5. 8.6.1.2.5  电流设置命令 (ISETx)
          6. 8.6.1.2.6  峰值电流限制 (IPK)
          7. 8.6.1.2.7  功率 MOSFET
          8. 8.6.1.2.8  辅助电源
          9. 8.6.1.2.9  自举电容器
          10. 8.6.1.2.10 过压保护 (OVP)
          11. 8.6.1.2.11 死区时间 (DT/SD)
          12. 8.6.1.2.12 通道电流监测器 (IMONx)
          13. 8.6.1.2.13 欠压锁定 (UVLO)
          14. 8.6.1.2.14 HVx 引脚配置
          15. 8.6.1.2.15 环路补偿
          16. 8.6.1.2.16 软启动 (SS/DEMx)
        3. 8.6.1.3 应用曲线
          1. 8.6.1.3.1 效率和热性能
          2. 8.6.1.3.2 阶跃负载响应
          3. 8.6.1.3.3 双通道交错运行
          4. 8.6.1.3.4 典型启动和关断
          5. 8.6.1.3.5 DEM 和 FPWM
          6. 8.6.1.3.6 DEM 和 FPWM 之间的模式转换
          7. 8.6.1.3.7 ISET 跟踪和预充电
          8. 8.6.1.3.8 保护功能
    7. 8.7 电源相关建议
    8. 8.8 布局
      1. 8.8.1 布局指南
      2. 8.8.2 布局示例
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 开发支持
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 商标
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

电压环路补偿

图 8-1 中显示了具有高压电压调节和低压电压调节的典型双向应用。将外部电压环路误差放大器(ERRHV 和 ERRLV)误差电压连接到 ISETx 以作为内部电流环路的基准。

外部电压环路交叉频率 fCV 需要比内部电流环路交叉频率 fCI 低一个十倍频程。此外,升压外部电压环路交叉频率也需要低于右半平面零点 (RHPZ) 的 1/5。

LM5171-Q1 外部电压环路控制图 8-6 外部电压环路控制

建议使用图 8-6 所示的 II 型补偿器来稳定降压和升压模式运行时的电压环路。

我们以降压模式补偿为例进行分析。降压模式补偿器的传递函数如下所示:

方程式 64. G c v s = v ^ I S E T v ^ L V A V M × ω Z E A s × 1 + s ω Z E A 1 + s ω H F × K I S E T

其中

方程式 65. A V M R L C O M P R L F B T
方程式 66. ω Z E A = 1 R L C O M P × C L C O M P
方程式 67. ω H F 1 R L C O M P × C L H F
方程式 68. K I S E T = R I S E T B R I S E T T + R I S E T B

降压模式外部电压环路的总开环增益 Tv_BK(s) 是 Gvs_BK(s) 和 Gcv(s) 的乘积:

方程式 69. T v _ B K s = G v s _ B K s × G c v s

或者:

方程式 70. T v _ B K s = K d c _ B K × 1 + s ω Z _ v l 1 + s ω Z _ i l × A V M × ω Z E A s × 1 + s ω Z E A 1 + s ω H F × K I S E T

要定制在 fCV 处交叉的总外部电压环路增益,请根据以下指南选择补偿网络的元件,然后对网络进行微调以实现最佳的环路性能。

  1. 根据偏置电流和功率耗散选择 RLFBT 的值。
  2. 零点 ωZEA 处于目标交叉频率 fCV 的 1/5 左右。
  3. 极点 ωHF 处于 fCV 的 10 倍左右。
  4. 总开环增益在 fCV 处设置为单位增益,即:

方程式 71. T v _ B K 2 i × π × f C V = 1

因此,根据上述公式得出补偿元件为:

方程式 72. R L C O M P = R L F B T K d c _ B K × 1 + 2 i × π × f C V ω Z _ v l 1 + 2 i × π × f C V ω Z _ i l × K I S E T C L C O M P = 1 2 i × π × f C V 5 × R C O M P C L H F = 1 2 i × π × 10 × f C V × R C O M P

升压电压环路的补偿器采用类似设计。请注意,升压电压环路交叉频率也需要低于 RHPZ 的 1/5。