SWRU439M October   2015  – April 2022

 

  1.   Trademarks
  2. 1Introduction
  3. 2Overview
    1. 2.1 Sensor Controller and AUX Domain Hardware Overview
      1. 2.1.1 Hardware Functionality
      2. 2.1.2 Power and Clock Management
        1. 2.1.2.1 CC13x0 and CC26x0 Operation Modes
        2. 2.1.2.2 CC13x2 and CC26x2 Operation Modes
        3. 2.1.2.3 Communication With the System CPU Application
    2. 2.2 Sensor Controller Interface Driver
      1. 2.2.1 Tailored How-To-Use Guide
      2. 2.2.2 Doxygen Documentation
    3. 2.3 Sensor Controller Programming Model
    4. 2.4 Sensor Controller Tasks
      1. 2.4.1 Data Structures
      2. 2.4.2 Task Code Blocks
      3. 2.4.3 High-Level Program Flow
    5. 2.5 Task Testing and Debugging
    6. 2.6 Run-Time Logging
  4. 3Prerequisites
    1. 3.1 Driver
    2. 3.2 Examples
  5. 4Installation
    1. 4.1 Sensor Controller Studio for Windows
      1. 4.1.1 Update Service
    2. 4.2 Sensor Controller Studio CLI for Linux (64-Bit)
  6. 5Sensor Controller Studio Tutorials
  7. 6Sensor Controller Studio Walkthrough
    1. 6.1  Start Page and Navigation
    2. 6.2  Documentation
    3. 6.3  Open the Example
    4. 6.4  Project Panel
    5. 6.5  Task Panel Settings
    6. 6.6  Constants and Data Structures Panel
    7. 6.7  Task Code Editor Panels
    8. 6.8  I/O Mapping Panel
    9. 6.9  Code Generator Panel
    10. 6.10 Compiling Example Applications in IAR or CCS
    11. 6.11 Task Testing Panel
      1. 6.11.1 Task Testing Setup
      2. 6.11.2 Task Testing Session
      3. 6.11.3 Data Handling
      4. 6.11.4 Task Debugging Panel
    12. 6.12 Run-Time Logging Panel
      1. 6.12.1 Run-Time Logging Setup
      2. 6.12.2 Run-Time Logging Session
  8. 7References
  9. 8Revision History

Task Testing and Debugging

The Sensor Controller Studio provides a generic, easy-to-use environment for ad hoc and exhaustive testing, and for low-level debugging of tasks.

Task testing can be performed one task at a time, using an XDS100v3, XDS110 or XDS200 JTAG debug probe for interfacing with the CC13xx and CC26xx device. While testing, the Sensor Controller Studio acts as the System CPU application and is responsible for controlling the Sensor Controller task. Values of all data structure members (from cfg, input, output and state) are logged after each task iteration. These values can be displayed graphically in Sensor Controller Studio and can also be saved to file for external analysis.

Low-level task code debugging allows for single-stepping instructions or running, with breakpoints, the initialization, execution, event handler and termination code blocks. Debugging is performed on the generated assembly code.

Because the Sensor Controller tasks will execute asynchronously with the System CPU application, and mostly while the MCU power/clock domain is in standby, there is normally little to be gained from debugging the Sensor Controller code together with the System CPU application code. This option is therefore not supported.