SPRUJ51A June   2023  – November 2025

 

  1.   1
  2.   Description
  3.   Features
  4.   4
  5. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Device Information
    4. 1.4 EVM Revisions and Assembly Variants
    5. 1.5 Specification
  6. 2Hardware
    1. 2.1  Additional Images
    2. 2.2  Key Features
      1. 2.2.1 Processor
      2. 2.2.2 Memory
      3. 2.2.3 JTAG Emulator
      4. 2.2.4 Supported Interfaces and Peripherals
      5. 2.2.5 Expansion Connectors Headers to Support Application Specific Add On Boards
    3. 2.3  Power
      1. 2.3.1 Power Requirements
      2. 2.3.2 Power Input
      3. 2.3.3 Power Supply
      4. 2.3.4 Power ON OFF Procedures
        1. 2.3.4.1 Power-On Procedure
        2. 2.3.4.2 Power-Off Procedure
        3. 2.3.4.3 Power Test Points
      5. 2.3.5 Power Sequencing
      6. 2.3.6 AM62x 17x17 SoC Power
      7. 2.3.7 Current Monitoring
    4. 2.4  AM62x-Low Power SK EVM Interface Mapping
    5. 2.5  Clocking
    6. 2.6  Reset
    7. 2.7  OLDI Display Interface
    8. 2.8  CSI Interface
    9. 2.9  Audio Codec Interface
    10. 2.10 HDMI Display Interface
    11. 2.11 JTAG Interface
    12. 2.12 Test Automation Header
    13. 2.13 UART Interface
    14. 2.14 USB Interface
      1. 2.14.1 USB2.0 Type A Interface
      2. 2.14.2 USB2.0 Type C Interface
    15. 2.15 Memory Interfaces
      1. 2.15.1 LPDDR4 Interface
      2. 2.15.2 OSPI
      3. 2.15.3 MMC Interfaces
        1. 2.15.3.1 MMC0 - eMMC Interface
        2. 2.15.3.2 MMC1 - Micro SD Interface
        3. 2.15.3.3 MMC2 - M2 Key E Interface
      4. 2.15.4 EEPROM
    16. 2.16 Ethernet Interface
      1. 2.16.1 CPSW Ethernet PHY1 Default Configuration
      2. 2.16.2 CPSW Ethernet PHY2 Default Configuration
    17. 2.17 GPIO Port Expander
    18. 2.18 GPIO Mapping
    19. 2.19 AM62x-Low Power SK EVM User Setup and Configuration
      1. 2.19.1 EVM DIP Switches
      2. 2.19.2 Boot Modes
      3. 2.19.3 User Test LEDs
    20. 2.20 Expansion Headers
      1. 2.20.1 User Expansion Connector
      2. 2.20.2 MCU Connector
      3. 2.20.3 PRU Connector
    21. 2.21 Push Buttons
    22. 2.22 I2C Address Mapping
  7. 3Hardware Design Files
  8. 4Compliance Information
    1. 4.1 EMC, EMI and ESD Compliance
  9. 5Additional Information
    1. 5.1 Known Issues and Modifications
    2.     Trademarks
    3.     72
  10. 6Revision History

Test Automation Header

The AM62x-Low Power SK EVM has a 40 pin test automation header (FH12A-40S-0.5SH) to allow an external controller to manipulate some basic operations like Power Down, POR, Warm Reset, Boot Mode control etc.

The Test Automation Circuit is powered by the 3.3V supply generated by a dedicated regulator Mfr.Part# TPS62177DQCR. The SoC’s I2C1 is connected to the test automation header. Another I2C instance (BOOTMODE_I2C) from the Test Automation Header is connected to the 24 bit I2C boot mode IO Expander of Mfr. Part# TCA6424ARGJR to allow control of the boot modes for the AM62X SoC.

 Test Automation Interface Block Diagram Figure 2-14 Test Automation Interface Block Diagram

The test automation circuit has voltage translation circuits so that the controller is isolated from the IO voltages used by the AM62x SoC. Boot mode for the AM62x SoC must be controlled by either the user using DIP Switches or the test automation header through the I2C IO Expander. Boot Mode Buffers are used to isolate the Boot Mode controls driven through DIP Switches or I2C IO Expander. The boot mode is controlled by the user using two 8-bit DIP switches on the board, which will connect a pull-up resistor to the output of a buffer when the switch is set to the ON position and to weaker pull-down resistor when set to the OFF position. The output of the buffer is connected to the boot mode pins on the AM62x SoC and the output is enabled when the boot mode is needed during a reset cycle.

When boot mode is set through Test Automation header, the required switch values are set at the I2C IO expander output, which overwrites the DIP switch values to give the desired boot values to the SoC. The pins used for boot mode also have other functions which will be isolated by disabling the boot mode buffer during normal operation.

The power down signal from the test automation header instructs the SK EVM to power down all the rails except for dedicated power supplies on the board. Similarly PORZn signal is also provided to give a hard reset to the SoC and WARM_RESETn for warm reset of the SoC.

Table 2-11 Test Automation Connector (J24) Pinout
Pin no. Signal IO Direction Pin no. Signal IO Direction
1VCC3V3_TAPower21NCNA
2VCC3V3_TAPower22NCNA
3VCC3V3_TAPower23NCNA
4NCNA24NCNA
5NCNA25DGNDPower
6NCNA26TEST_POWERDOWNInput
7DGNDPower27TEST_PORZnInput
8NCNA28TEST_WARMRESETnInput
9NCNA29NCNA
10NCNA30TEST_GPIO1Bidirectional
11NCNA31TEST_GPIO2Bidirectional
12NCNA32TEST_GPIO3Input
13NCNA33TEST_GPIO4Input
14NCNA34DGNDPower
15NCNA35NCNA
16DGNDPower36SoC_I2C1_TA_SCLBidirectional
17NCNA37BOOTMODE_I2C_SCLBidirectional
18NCNA38SoC_I2C1_TA_SDABidirectional
19NCNA39BOOTMODE_I2C_SDABidirectional
20NCNA40DGNDPower