SLVSBD1B December   2012  – August 2025 TPS65175

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configurations
  6. Ordering Information #GUID-A66BA10C-7D19-4133-842F-4CC0C2AD52C6/SLVSAP8211
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Thermal Information
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Electrical Characteristics
    5. 6.5 I2C Interface Timing Characteristics #GUID-79B32470-0E13-4B06-925C-21E3D7AB5A31/SLVSAE57133
    6. 6.6 I2C Timing Diagrams
    7.     14
    8.     15
    9.     16
    10. 6.7 Typical Characteristics
  8. DAC Range Summary
    1.     19
    2. 7.1 Sequencing
    3. 7.2 Power-Up
    4. 7.3 Power-Down
  9. Detailed Description
    1. 8.1  Boost Converter (VDD)
      1. 8.1.1 Enable Signal (DLY2)
      2. 8.1.2 Boost Converter Operation
      3. 8.1.3 Startup (Boost Converter)
      4. 8.1.4 Protections (Boost Converter)
      5. 8.1.5 Setting the Output Voltage VDD
    2. 8.2  Boost Converter Design Procedure
      1. 8.2.1 Inductor Selection (Boost Converter)
      2. 8.2.2 Rectifier Diode Selection (Boost Converter)
      3. 8.2.3 Compensation (COMP)
      4. 8.2.4 Input Capacitor Selection
      5. 8.2.5 Output Capacitor Selection
      6. 8.2.6 DCM Mode
    3. 8.3  Buck Converter (VCC)
      1. 8.3.1 Enable Signal (UVLO)
      2. 8.3.2 Buck converter Operation
      3. 8.3.3 Startup and Short Circuit Protection (Buck Converter)
      4. 8.3.4 Setting the Output Voltage VCC
    4. 8.4  Buck Converter Design Procedure
      1. 8.4.1 Inductor Selection (Buck Converter)
      2. 8.4.2 Rectifier Diode Selection (Buck Converter)
      3. 8.4.3 Input Capacitor Selection (Buck Converter)
      4. 8.4.4 Output Capacitor Selection (Buck Converter)
      5. 8.4.5 DCM Mode
    5. 8.5  Synchronous Buck Converter (HVDD)
      1. 8.5.1 Enable Signal (DLY2)
      2. 8.5.2 Startup and Short Circuit Protection (Synchronous Buck Converter)
      3. 8.5.3 Setting the output voltage HVDD
    6. 8.6  Synchronous Buck Converter Design Procedure
      1. 8.6.1 Inductor Selection (Synchronous Buck Converter)
      2. 8.6.2 Input Capacitor Selection
      3. 8.6.3 Output Capacitor Selection
    7. 8.7  Positive Charge Pump Controller (VGH) and Temperature Compensation
      1. 8.7.1 Enable Signal (DLY3)
      2. 8.7.2 Positive Charge Pump Controller Operation
    8. 8.8  Positive Charge Pump Design Procedure
      1. 8.8.1 Diodes selection (CPP)
      2. 8.8.2 Capacitors Selection (CPP)
      3. 8.8.3 Selecting the PNP Transistor (CPP)
      4. 8.8.4 Positive Charge Pump Protection
    9. 8.9  VGH Temperature Compensation
      1. 8.9.1 Setting the output voltage VGH_LT and VGH_HT
    10. 8.10 Negative Charge Pump (VGL)
      1. 8.10.1 Enable Signal (DLY1)
      2. 8.10.2 Setting the output voltage VGL
    11. 8.11 Negative Charge Pump Design Procedure
      1. 8.11.1 Diodes Selection (CPN)
      2. 8.11.2 Capacitors selection (CPN)
      3. 8.11.3 Selecting the NPN Transistor (CPN)
      4. 8.11.4 Negative Charge Pump Protection
    12. 8.12 P-Vcom Voltage and Gain (VCOM)
      1. 8.12.1 Enable Signal (DLY2)
    13. 8.13 P-Vcom Design Procedure
      1. 8.13.1 Setting the P-Vcom gain
    14. 8.14 P-Vcom Temperature Compensation
      1. 8.14.1 Setting the VCOM output voltage
    15. 8.15 Gamma Buffer (GMA1-GMA6)
      1. 8.15.1 Enable Signal (DLY2)
      2. 8.15.2 Setting the output voltage of GMA1-GMA6
      3. 8.15.3 Output Load (Gamma Buffer)
    16. 8.16 Level Shifters
    17. 8.17 State Machine
    18. 8.18 GCLK
    19. 8.19 MCLK
    20. 8.20 GST
    21. 8.21 E/O
    22. 8.22 Reverse
    23. 8.23 VGH_F and VGH_R
    24. 8.24 VST
    25. 8.25 RESET
    26. 8.26 EVEN and ODD
    27. 8.27 Abnormal Operation
    28. 8.28 CLK1 to CLK6
    29. 8.29 Gate Voltage Shaping
    30. 8.30 Power Supply Sequencing (CLK1-CLK6, VST, RESET)
    31. 8.31 Power Supply Sequencing (EVEN, ODD)
    32. 8.32 Power Supply Sequencing (VGH_F, VGH_R)
    33.     101
    34. 8.33 Typical Applications
  10. APPENDIX – I2C INTERFACE
    1. 9.1 I2C Serial Interface Description
  11. 10Detailed Description
    1. 10.1 DAC Settings
    2. 10.2 I2C Interface Protocol
    3. 10.3 Temperature Compensation
    4. 10.4 PCB Layout Recommendations
  12. 11Register Map
  13. 12DAC Registers
  14. 13Electrostatic Discharge Caution
  15. 14Revision History
  16. 15Mechanical, Packaging, and Orderable Information
    1. 15.1 Package Option Addendum
      1. 15.1.1 Packaging Information
      2. 15.1.2 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)

Protections (Boost Converter)

The boost converter is protected against potentially damaging conditions such as overvoltage and short circuits.

  1. Short-Circuit Protection
    The boost converter integrates a short-circuit protection circuit to prevent the inductor or the rectifier diode from overheating when the output rail is shorted to GND. If the boost output is shorted to GND and the voltage on SWO drops below VIN - 0.5 V, the boost converter shuts down and the input-to-output isolation is turned-off. Only when the SWO voltage drops below 2 V typically, the switch turns on again and limits the current to 200 mA typically (start-up behavior). The soft-start capacitor is also discharged to ground.
  2. Overvoltage Protection
    The boost converter integrates an overvoltage protection. If the output voltage VDD exceeds the OVP threshold of 20.3 V typically , the boost converter stops switching. The output voltage will drop down by the hysteresis and the boost converter will autonomously recover and switch again.

Note:

The boost converter stops switching while the positive charge pump is in a short circuit condition. This condition is not latched and the boost converter autonomously resumes normal operation once the short circuit condition has been removed from the positive charge pump.