ZHCSF14D March   2010  – October 2018 TPS54260

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
      2.      效率与负载电流间的关系
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed Frequency PWM Control
      2. 7.3.2  Slope Compensation Output Current
      3. 7.3.3  Pulse-Skip Eco-Mode
      4. 7.3.4  Low-Dropout Operation and Bootstrap Voltage (BOOT)
      5. 7.3.5  Error Amplifier
      6. 7.3.6  Voltage Reference
      7. 7.3.7  Adjusting the Output Voltage
      8. 7.3.8  Enable and Adjusting Undervoltage Lockout
      9. 7.3.9  Slow-Start / Tracking Pin (SS/TR)
      10. 7.3.10 Overload Recovery Circuit
      11. 7.3.11 Sequencing
      12. 7.3.12 Constant Switching Frequency and Timing Resistor (RT/CLK Pin)
      13. 7.3.13 Overcurrent Protection and Frequency Shift
      14. 7.3.14 Selecting the Switching Frequency
      15. 7.3.15 How to Interface to RT/CLK Pin
      16. 7.3.16 Powergood (PWRGD Pin)
      17. 7.3.17 Overvoltage Transient Protection
      18. 7.3.18 Thermal Shutdown
      19. 7.3.19 Small Signal Model for Loop Response
      20. 7.3.20 Simple Small Signal Model for Peak Current Mode Control
      21. 7.3.21 Small Signal Model for Frequency Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation Near Minimum Input Voltage
      2. 7.4.2 Operation With Enable Control
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 3.3-V Output Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2  Selecting the Switching Frequency
          3. 8.2.1.2.3  Output Inductor Selection (LO)
          4. 8.2.1.2.4  Output Capacitor
          5. 8.2.1.2.5  Catch Diode
          6. 8.2.1.2.6  Input Capacitor
          7. 8.2.1.2.7  Slow-Start Capacitor
          8. 8.2.1.2.8  Bootstrap Capacitor Selection
          9. 8.2.1.2.9  Undervoltage Lock Out Set Point
          10. 8.2.1.2.10 Output Voltage and Feedback Resistors Selection
          11. 8.2.1.2.11 Compensation
          12. 8.2.1.2.12 Discontinuous Mode and Eco-Mode Boundary
          13. 8.2.1.2.13 Power Dissipation Estimate
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Inverting Power Supply
      3. 8.2.3 Split-Rail Power Supply
      4. 8.2.4 12-V to 3.8-V GSM Power Supply
      5. 8.2.5 24-V to 4.2-V GSM Power Supply
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方产品免责声明
      2. 11.1.2 开发支持
        1. 11.1.2.1 使用 WEBENCH® 工具创建定制设计
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Input Capacitor

The TPS54260 requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor of at least 3 μF of effective capacitance and in some applications a bulk capacitance. The effective capacitance includes any dc bias effects. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum input current ripple of the TPS54260. The input ripple current can be calculated using Equation 38.

The value of a ceramic capacitor varies significantly over temperature and the amount of dc bias applied to the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature. The output capacitor must also be selected with the dc bias taken into account. The capacitance value of a capacitor decreases as the dc bias across a capacitor increases.

For this example design, a ceramic capacitor with at least a 60-V voltage rating is required to support the maximum input voltage. Common standard ceramic capacitor voltage ratings include 4 V, 6.3 V, 10 V, 16 V, 25 V, 50 V or 100 V so a 100-V capacitor should be selected. For this example, two 2.2-μF, 100-V capacitors in parallel have been selected. Table 2 shows a selection of high-voltage capacitors. The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be calculated using Equation 39. Using the design example values, Ioutmax = 2.5 A, Cin = 4.4 μF, ƒsw = 300 kHz, yields an input voltage ripple of 473 mV and a RMS input ripple current of 1.15 A.

Equation 38. TPS54260 eq40_lvs795.gif
Equation 39. TPS54260 eq41_lvs795.gif

Table 2. Capacitor Types

VENDOR VALUE (μF) EIA Size VOLTAGE DIALECTRIC COMMENTS
Murata 1.0 to 2.2 1210 100 V X7R GRM32 series
1.0 to 4.7 50 V
1.0 1206 100 V GRM31 series
1.0 to 2.2 50 V
Vishay 1.0 10 1.8 2220 50 V VJ X7R series
1.0 to 1.2 100 V
1.0 to 3.9 2225 50 V
1.0 to 1.8 100 V
TDK 1.0 to 2.2 1812 100 V C series C4532
1.5 to 6.8 50 V
1.0. to 2.2 1210 100 V C series C3225
1.0 to 3.3 50 V
AVX 1.0 to 4.7 1210 50 V X7R dielectric series
1.0 100 V
1.0 to 4.7 1812 50 V
1.0 to 2.2 100 V