ZHCSMQ9B September   2020  – November 2022 SN65MLVD203B

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  绝对最大额定值
    2. 6.2  ESD 等级
    3. 6.3  建议运行条件
    4. 6.4  热性能信息
    5. 6.5  电气特性
    6. 6.6  电气特性 - 驱动器
    7. 6.7  电气特性 - 接收器
    8. 6.8  开关特性 - 驱动器
    9. 6.9  开关特性 - 接收器
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Power-On-Reset
      2. 8.3.2 ESD Protection
      3. 8.3.3 RX Maximum Jitter While DE Toggling
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation with VCC < 1.5 V
      2. 8.4.2 Operations with 1.5 V ≤ VCC < 3 V
      3. 8.4.3 Operation with 3 V ≤ VCC < 3.6 V
      4. 8.4.4 Device Function Tables
      5. 8.4.5 Equivalent Input and Output Schematic Diagrams
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Multipoint Communications
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1  Supply Voltage
        2. 9.2.3.2  Supply Bypass Capacitance
        3. 9.2.3.3  Driver Input Voltage
        4. 9.2.3.4  Driver Output Voltage
        5. 9.2.3.5  Termination Resistors
        6. 9.2.3.6  Receiver Input Signal
        7. 9.2.3.7  Receiver Input Threshold (Failsafe)
        8. 9.2.3.8  Receiver Output Signal
        9. 9.2.3.9  Interconnecting Media
        10. 9.2.3.10 PCB Transmission Lines
      4. 9.2.4 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Microstrip vs. Stripline Topologies
        2. 9.4.1.2 Dielectric Type and Board Construction
        3. 9.4.1.3 Recommended Stack Layout
        4. 9.4.1.4 Separation Between Traces
        5. 9.4.1.5 Crosstalk and Ground Bounce Minimization
        6. 9.4.1.6 Decoupling
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Microstrip vs. Stripline Topologies

As per SLLD009, printed-circuit boards usually offer designers two transmission line options: Microstrip and stripline. Microstrips are traces on the outer layer of a PCB, as shown in Figure 9-7.

GUID-E74E77E4-5A70-4169-8BCD-7353548C8973-low.pngFigure 9-7 Microstrip Topology

On the other hand, striplines are traces between two ground planes. Striplines are less prone to emissions and susceptibility problems because the reference planes effectively shield the embedded traces. However, from the standpoint of high-speed transmission, juxtaposing two planes creates additional capacitance. TI recommends routing M-LVDS signals on microstrip transmission lines if possible. The PCB traces allow designers to specify the necessary tolerances for ZO based on the overall noise budget and reflection allowances. Footnotes 11, 22, and 33 provide formulas for ZO and tPD for differential and single-ended traces. (2)(3)(4)

GUID-FD7952FF-1339-4633-BAF1-25588D08A78C-low.pngFigure 9-8 Stripline Topology
Howard Johnson & Martin Graham.1993. High Speed Digital Design – A Handbook of Black Magic. Prentice Hall PRT. ISBN number 013395724.
Mark I. Montrose. 1996. Printed Circuit Board Design Techniques for EMC Compliance. IEEE Press. ISBN number 0780311310.
Clyde F. Coombs, Jr. Ed, Printed Circuits Handbook, McGraw Hill, ISBN number 0070127549.