SBOSA42B June   2024  – December 2025 OPA2596

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information OPA596
    5. 5.5 Thermal Information OPA596
    6. 5.6 Electrical Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 MUX-Friendly Inputs
      2. 6.3.2 Thermal Protection
      3. 6.3.3 Advanced Slew Boost
      4. 6.3.4 Overload Recovery
      5. 6.3.5 Full-Power Bandwidth Improved
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Bridge-Connected Piezoelectric Driver
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
      2. 7.2.2 DAC Output Gain and Buffer
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
      3. 7.2.3 Single-Supply Piezoelectric Driver
      4. 7.2.4 High-Side Current Sense
      5. 7.2.5 High-Voltage Instrumentation Amplifier
      6. 7.2.6 Composite Amplifier
    3. 7.3 Creepage and Clearance
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
        1. 7.5.1.1 Thermal Considerations
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DGK|8
散热焊盘机械数据 (封装 | 引脚)
订购信息

Composite Amplifier

The OPAx596 offers low input offset voltage and input offset drift. In some applications, however, even higher precision is required. Figure 7-7 shows how to greatly improve the dc precision of the OPAx596. The OPA186 is a 24V, zero-drift op amps offered at a competitive cost and can be paired with the OPAx596 in a composite amplifier configuration to create a high precision amplifier with high voltage output capability.

The first amplifier, OPA186, corrects the offset of the second amplifier, OPAx596. The gain of the composite amplifier is set by RF and RG, such that the gain is equal to RF / RG + 1. In this application, the overall gain of the circuit is 100V/V. Adding gain to the OPAx596 through R1 and R2 improves the overall bandwidth of the composite amplifier by reducing the gain burden on the OPA186. Increasing the gain too much on the second amplifier, however, reduces the closed loop bandwidth and can negatively affect phase margin. Special considerations for stability are warranted when building composite amplifiers.

OPA2596 High-Precision, High-Voltage
                    Output Composite Amplifier Figure 7-7 High-Precision, High-Voltage Output Composite Amplifier