SNVS397F September   2005  – December 2025 LM5005

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 High-Voltage Start-Up Regulator
      2. 6.3.2 Shutdown and Standby
      3. 6.3.3 Oscillator and Synchronization Capability
      4. 6.3.4 Error Amplifier and PWM Comparator
      5. 6.3.5 RAMP Generator
      6. 6.3.6 Current Limit
      7. 6.3.7 Soft-Start Capability
      8. 6.3.8 MOSFET Gate Driver
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
      2. 6.4.2 Standby Mode
      3. 6.4.3 Light-Load Operation
      4. 6.4.4 Thermal Shutdown Protection
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Reducing Bias Power Dissipation
      2. 7.1.2 Input Voltage UVLO Protection
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1  Custom Design With WEBENCH® Tools
        2. 7.2.2.2  Frequency Set Resistor (RT)
        3. 7.2.2.3  Inductor (LF)
        4. 7.2.2.4  Ramp Capacitor (CRAMP)
        5. 7.2.2.5  Output Capacitors (COUT)
        6. 7.2.2.6  Schottky Diode (DF)
        7. 7.2.2.7  Input Capacitors (CIN)
        8. 7.2.2.8  VCC Capacitor (CVCC)
        9. 7.2.2.9  Bootstrap Capacitor (CBST)
        10. 7.2.2.10 Soft Start Capacitor (CSS)
        11. 7.2.2.11 Feedback Resistors (RFB1 and RFB2)
        12. 7.2.2.12 RC Snubber (RS and CS)
        13. 7.2.2.13 Compensation Components (RC1, CC1, CC2)
        14. 7.2.2.14 Bill of Materials
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 PCB Layout for EMI Reduction
        2. 7.4.1.2 Thermal Design
        3. 7.4.1.3 Ground Plane Design
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Third-Party Products Disclaimer
    2. 8.2 Device Support
      1. 8.2.1 Development Support
        1. 8.2.1.1 Custom Design With WEBENCH® Tools
    3. 8.3 Documentation Support
      1. 8.3.1 Related Documentation
        1. 8.3.1.1 PCB Layout Resources
        2. 8.3.1.2 Thermal Design Resources
    4. 8.4 Receiving Notification of Documentation Updates
    5. 8.5 Support Resources
    6. 8.6 Trademarks
    7. 8.7 Electrostatic Discharge Caution
    8. 8.8 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

High-Voltage Start-Up Regulator

The LM5005 contains a dual-mode internal high-voltage start-up regulator that provides the VCC bias supply for the PWM controller and bootstrap MOSFET gate driver. Directly connect the VIN pins to the input voltage, as high as 75V. For input voltages below 9V, a low dropout switch connects VCC directly to VIN. In this supply range, VCC is approximately equal to VIN. For input voltages greater than 9V, the low dropout switch is disabled and the VCC regulator is enabled to maintain VCC at approximately 7V. The wide operating range of 7V to 75V is achieved through the use of this dual-mode regulator.

The output of the VCC regulator is current limited to 20mA. Upon power up, the regulator sources current into the capacitor connected to the VCC pin. When the voltage at the VCC pin exceeds the VCC UVLO threshold of 6.3V and the SD pin is greater than 1.225V, a soft-start sequence begins. Switching continues until VCC falls below 5.3V or the SD pin falls below 1.125V.

Apply an auxiliary supply voltage to the VCC pin to reduce the IC power dissipation. If the auxiliary voltage is greater than 7.3V, the internal regulator essentially shuts off, reducing the IC power dissipation. The VCC regulator series pass transistor includes a diode between VCC and VIN that must not be forward biased in normal operation. Therefore, the auxiliary VCC voltage must never exceed the VIN voltage.

Take extra care in high-voltage applications to establish that the VIN and PRE pin voltages do not exceed the absolute maximum voltage ratings of 76V. During line or load transients, voltage ringing on the input bus that exceeds the Absolute Maximum Ratings can damage the IC. Careful PC board layout and the use of quality input bypass capacitors placed close to the VIN and PGND pins are essential. See Layout Guidelines for more detail.

LM5005 VIN and VCC SequencingFigure 6-1 VIN and VCC Sequencing