ZHCSHA7E January   2001  – January 2018 DS92LV040A

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     简化功能图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics
    6. 6.6 AC Electrical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuits and Timing Waveforms
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Multipoint Communications
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Supply Voltage
        2. 9.2.3.2 Supply Bypass Capacitance
        3. 9.2.3.3 Termination Resistors
        4. 9.2.3.4 Interconnecting Media
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Microstrip vs. Stripline Topologies
      2. 11.1.2 Dielectric Type and Board Construction
      3. 11.1.3 Recommended Stack Layout
      4. 11.1.4 Separation Between Traces
      5. 11.1.5 Crosstalk and Ground Bounce Minimization
      6. 11.1.6 Decoupling
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Interconnecting Media

The backplane and connectors should have a matched differential impedance. Use controlled impedance traces which match the differential impedance of your transmission medium (ie. backplane or cable) and termination resistor(s). Run the differential pair trace lines as close together as possible as soon as they leave the IC. This helps eliminate reflections and ensure noise is coupled as common-mode. In fact, it has been determined that differential signals which are 1 mm apart radiate far less noise than traces 3 mm apart since magnetic field cancellation is much better with the closer traces. Plus, noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver. Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI will result.

Stub lengths should be kept to a minimum. The typical transition time of the DS92LV040A Bus LVDS output is 0.75 ns (20% to 80%). The extrapolated 100 percent time is 0.75/0.6 or 1.25 ns. For a general approximation, if the electrical length of a trace is greater than 1/5 of the transition edge, then the trace is considered a transmission line. For example, 1.25 ns/5 is 250 picoseconds. Let velocity equal 160 ps per inch for a typical loaded backplane. Then maximum stub length is 250 ps/160 ps/in or 1.56 inches. To determine the maximum stub for the backplane, determine the propagation velocity for the actual conditions (refer to application notes AN 905 and AN 808)