ZHCSND1A November   2020  – May 2022 DRV8434

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 引脚功能
  6. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 Electrical Characteristics
    6. 6.6 Indexer Timing Requirements
      1. 6.6.1 典型特性
  7. 详细说明
    1. 7.1 概述
    2. 7.2 功能模块图
    3. 7.3 特性说明
      1. 7.3.1  Stepper Motor Driver Current Ratings
        1. 7.3.1.1 峰值电流额定值
        2. 7.3.1.2 均方根电流额定值
        3. 7.3.1.3 Full-Scale Current Rating
      2. 7.3.2  PWM Motor Drivers
      3. 7.3.3  Microstepping Indexer
      4. 7.3.4  Controlling VREF with an MCU DAC
      5. 7.3.5  电流调节
      6. 7.3.6  Decay Modes
        1. 7.3.6.1 Slow Decay for Increasing and Decreasing Current
        2. 7.3.6.2 Slow Decay for Increasing Current, Mixed Decay for Decreasing Current
        3. 7.3.6.3 上升和下降电流阶段均为混合衰减
        4. 7.3.6.4 Smart tune Dynamic Decay
        5. 7.3.6.5 智能调优纹波控制
        6. 7.3.6.6 PWM 关断时间
        7. 7.3.6.7 消隐时间
      7. 7.3.7  电荷泵
      8. 7.3.8  线性稳压器
      9. 7.3.9  Logic Level, Tri-Level and Quad-Level Pin Diagrams
        1. 7.3.9.1 nFAULT 引脚
      10. 7.3.10 保护电路
        1. 7.3.10.1 VM 欠压锁定 (UVLO)
        2. 7.3.10.2 VCP 欠压锁定 (CPUV)
        3. 7.3.10.3 过流保护 (OCP)
          1. 7.3.10.3.1 锁存关断
          2. 7.3.10.3.2 自动重试
        4. 7.3.10.4 开路负载检测 (OL)
        5. 7.3.10.5 热关断 (OTSD)
          1. 7.3.10.5.1 锁存关断
          2. 7.3.10.5.2 自动重试
        6.       Fault Condition Summary
    4. 7.4 器件功能模式
      1. 7.4.1 睡眠模式 (nSLEEP = 0)
      2.      52
      3. 7.4.2 禁用模式(nSLEEP = 1,ENABLE = 0)
      4. 7.4.3 工作模式(nSLEEP = 1,ENABLE = Hi-Z/1)
      5. 7.4.4 nSLEEP 复位脉冲
      6.      功能模式汇总
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
        2. 8.2.2.2 电流调节
        3. 8.2.2.3 衰减模式
        4. 8.2.2.4 应用曲线
        5. 8.2.2.5 Thermal Application
          1. 8.2.2.5.1 Power Dissipation
          2. 8.2.2.5.2 Conduction Loss
          3. 8.2.2.5.3 Switching Loss
          4. 8.2.2.5.4 Power Dissipation Due to Quiescent Current
          5. 8.2.2.5.5 Total Power Dissipation
          6. 8.2.2.5.6 Device Junction Temperature Estimation
  9. Power Supply Recommendations
    1. 9.1 大容量电容
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

概述

DRV8434 是一款用于双极步进电机的集成电机驱动器解决方案。该器件通过集成两个 N 沟道功率 MOSFET H 桥、电流检测电阻和调节电路以及一个微步进分度器,可更大程度提高集成度。DRV8434 与 DRV8426DRV8436DRV8424/25 引脚对引脚兼容。DRV8434 能够支持 4.5V 至 48V 的宽电源电压范围。DRV8434 提供高达 4A 峰值、2.5A 满量程或 1.8A 均方根 (rms) 的输出电流。实际的满量程和均方根电流取决于环境温度、电源电压和 PCB 热性能。

DRV8434 采用集成式电流检测架构,无需再使用两个外部功率检测电阻,从而显著节省布板空间和 BOM 成本,并减少设计工作量和降低功耗。该架构通过使用电流镜方法消除了检测电阻中的功率损耗,并使用内部功率 MOSFET 进行电流检测。通过 VREF 引脚处的电压来调节电流调节设定点。

借助简单的 STEP/DIR 接口,可通过外部控制器管理步进电机的方向和步进速率。内部微步进分度器可以执行高精度微步进,而无需外部控制器来管理绕组电流电平。分度器可实现全步进、半步进以及 1/4、1/8、1/16、1/32、1/64、1/128 和 1/256 微步进。高微步进有助于显著降低可闻噪声并实现平稳的运动。除了标准的半步进模式,非循环半步进模式可用于在较高的电机转速下增加扭矩输出。

步进电机驱动器需要通过实现多种类型的衰减模式(如慢速衰减、混合衰减和快速衰减)来再循环绕组电流。DRV8434 提供智能调优衰减模式。自动调优是一种创新的衰减机制,能够自动调节以实现出色的电流调节性能,而不受电压、电机转速、变化和老化效应的影响。自动调优纹波控制使用可变关断时间纹波电流控制方案,以更大限度地减少电机绕组电流的失真。自动调优动态衰减使用固定关断时间动态快速衰减百分比方案,以更大限度地减少电机绕组电流的失真,同时实现频率成分最小化并显著减少设计工作量。除了该无缝的轻松自动智能调优之外,DRV8434 还提供传统的衰减模式(如慢速混合衰减和混合衰减)。

该器件为内部数字振荡器和内部电荷泵集成了展频时钟特性。此特性可更大程度减少器件的辐射发射。系统包括一个低功耗睡眠模式,以便在不主动驱动电机时节省功耗。