ZHCSQ30 December   2022 DRV8317

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Output Stage
      2. 8.3.2  Control Modes
        1. 8.3.2.1 6x PWM Mode
        2. 8.3.2.2 3x PWM Mode
      3. 8.3.3  Device Interface Modes
        1. 8.3.3.1 Serial Peripheral Interface (SPI)
        2. 8.3.3.2 Hardware Interface
      4. 8.3.4  AVDD Linear Voltage Regulator
      5. 8.3.5  Charge Pump
      6. 8.3.6  Slew Rate Control
      7. 8.3.7  Cross Conduction (Dead Time)
      8. 8.3.8  Propagation Delay
      9. 8.3.9  Pin Diagrams
        1. 8.3.9.1 Logic Level Input Pin (Internal Pulldown)
        2. 8.3.9.2 Logic Level Input Pin (Internal Pullup)
        3. 8.3.9.3 Open Drain Pin
        4. 8.3.9.4 Push Pull Pin
        5. 8.3.9.5 Four Level Input Pin
      10. 8.3.10 Current Sense Amplifiers
        1. 8.3.10.1 Current Sense Amplifier Operation
      11. 8.3.11 Protections
        1. 8.3.11.1 Under Voltage Protection (UVP)
        2. 8.3.11.2 VM Under Voltage Warn (VMUV_WARN) Protection
          1. 8.3.11.2.1 VM Under Voltage Warn Automatic Retry (VMUV_WARN_MODE = 00b or 01b)
          2. 8.3.11.2.2 VM Under Voltage Warn Report Only (VMUV_WARN_MODE = 10b)
          3. 8.3.11.2.3 VM Under Voltage Warn Disabled (VMUV_WARN_MODE = 11b)
        3. 8.3.11.3 Over Current Protection (OCP)
          1. 8.3.11.3.1 OCP Latched Fault (OCP_MODE = 010b)
          2. 8.3.11.3.2 OCP Automatic Retry (OCP_MODE = 000b or 001b)
          3. 8.3.11.3.3 OCP Report Only (OCP_MODE = 011b)
        4. 8.3.11.4 VM Over Voltage Protection (OVP)
        5. 8.3.11.5 SPI Fault
        6. 8.3.11.6 System (OTP Read) Fault
        7. 8.3.11.7 Thermal Protection
          1. 8.3.11.7.1 FET Over Temperature Warning (OTW_FET)
          2. 8.3.11.7.2 FET Over Temperature Shutdown (OTS_FET)
          3. 8.3.11.7.3 LDO Over Temperature Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Functional Modes
        1. 8.4.1.1 Sleep Mode
        2. 8.4.1.2 Operating Mode
        3. 8.4.1.3 Fault Reset (FLT_CLR or nSLEEP Reset Pulse)
    5. 8.5 SPI Communication
      1. 8.5.1 Programming
        1. 8.5.1.1 SPI Format
    6. 8.6 DRV8317 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Three-Phase Brushless-DC Motor Control
        1. 9.2.1.1 Detailed Design Procedure
          1. 9.2.1.1.1 Motor Voltage
        2. 9.2.1.2 Driver Propagation Delay and Dead Time
        3. 9.2.1.3 Delay Compensation
        4. 9.2.1.4 Current Sensing and Output Filtering
        5. 9.2.1.5 Application Curves
    3. 9.3 Alternate Applications
  11. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
      1. 11.3.1 Power Dissipation and Junction Temperature Estimation
  13. 12Device and Documentation Support
    1. 12.1 支持资源
    2. 12.2 Trademarks
    3. 12.3 静电放电警告
    4. 12.4 术语表
  14. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout Guidelines

The bulk capacitor should be placed to minimize the distance of the high-current path through the motor driver device. The connecting metal trace widths should be as wide as possible, and numerous vias should be used when connecting PCB layers. These practices minimize inductance and allow the bulk capacitor to deliver high current.

Small-value capacitors should be ceramic, and placed closely to device pins including, AVDD, charge pump, CSAREF, VINAVDD and VM.

The high-current device outputs should use wide metal traces.

To reduce noise coupling and EMI interference from large transient currents into small-current signal paths, grounding should be partitioned between PGND and AGND. TI recommends connecting all non-power stage circuitry (including the thermal pad) to AGND to reduce parasitic effects and improve power dissipation from the device. Ensure grounds are connected through net-ties to reduce voltage offsets and maintain gate driver performance. A common ground plane can also be used for PGND and AGND to minimize inductance in the grounding, but it is recommended to place motor switching outputs as far away from analog and digital signals so motor noise does not couple into the analog and digital circuits.

The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias helps dissipate the heat that is generated in the device.

To improve thermal performance, maximize the ground area that is connected to the thermal pad ground across all possible layers of the PCB. Using thick copper pours can lower the junction-to-air thermal resistance and improve thermal dissipation from the die surface.

Figure 11-1 shows a recommended layout example.