ZHCAB74D September   2018  – March 2022 AFE030 , AFE031 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   商标
  2. FSK 概述
  3. 硬件预览
    1. 2.1 方框图
    2. 2.2 硬件设置
  4. 连接 AFE03x
    1. 3.1 配置 AFE031
  5. 发送路径
    1. 4.1 FSK 示例规格
    2. 4.2 PWM 模式
      1. 4.2.1 软件实现
      2. 4.2.2 测试结果
      3. 4.2.3 HRPWM 与 EPWM
    3. 4.3 DAC 模式
      1. 4.3.1 软件实现
      2. 4.3.2 测试结果
      3. 4.3.3 OFDM 功能
    4. 4.4 将 TX 移植到 LAUNCHXL-F280049C
      1. 4.4.1 特定于 PWM 模式的移植
      2. 4.4.2 特定于 DAC 模式的移植
  6. 接收路径
    1. 5.1 接收路径概述
    2. 5.2 接收器软件实现
      1. 5.2.1 初始设置和参数
      2. 5.2.2 中断服务例程
      3. 5.2.3 运行时工作
      4. 5.2.4 测试结果
      5. 5.2.5 系统利用率
      6. 5.2.6 器件相关性和移植
    3. 5.3 调优和校准
      1. 5.3.1 设置 AFE03X 的 PGA
      2. 5.3.2 自动增益控制 (AGC)
      3. 5.3.3 设置位检测阈值
      4. 5.3.4 FSK 相关性检测器库
    4. 5.4 将 RX 移植到 LAUNCHXL-F280049C
  7. 连接电源线
    1. 6.1 线路耦合
    2. 6.2 耦合到交流线路
      1. 6.2.1 低压电容器
      2. 6.2.2 变压器的匝数比
      3. 6.2.3 高压电容器
      4. 6.2.4 高压侧电感器
    3. 6.3 耦合到直流线路
    4. 6.4 保护电路
      1. 6.4.1 金属氧化物压敏电阻
      2. 6.4.2 瞬态电压抑制器
      3. 6.4.3 导流二极管
    5. 6.5 确定 PA 电源要求
  8. 总结
  9. 参考文献
  10. 原理图
    1. 9.1 原理图(PWM 模式)
    2. 9.2 原理图(DAC 模式)
  11. 10修订历史记录

高压电容器

高压 (HV) 电容器通过与线路耦合变压器的绕组电感形成分压器来阻断低频市电电压。在使用高压 CBB 电容器时,最大电压范围必须超过电网交流电压的振幅。在大约 80% 的交流额定电压下运行电容器,可确保元件具有较长的使用寿命。下一项重要的要求是设置最大无功功率(VA 限制)的标准。例如,将器件连接到电网的欧洲产品标准必须具有小于 10VAR 的无功功率,从而要求电容器值小于 0.55µF。下面的公式显示了如何使用值 0.55µF 来确定高压电容器值。

Equation3. GUID-6FD04588-9F32-4D37-B662-CC631C0031D7-low.gif

对于具有 10VA 限制的 240VAC、50Hz 应用,

Equation4. GUID-385F2CF3-B09F-44AC-9943-469CE2ECCA18-low.gif

需要注意的是,建议使用金属化聚丙烯电磁干扰和射频干扰 (EMI/RFI) 抑制电容器,因为与电介质相关的损耗因数较低,可以最大限度地减少内部自发热。