SNVS837B June   2013  – April 2016 LM3263

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  PWM Operation
      2. 7.3.2  PFM Operation
      3. 7.3.3  Active Current Assist and Analog Bypass (ACB)
      4. 7.3.4  Bypass Operation
      5. 7.3.5  Dynamic Adjustment of Output Voltage
      6. 7.3.6  DC-DC Operating Mode Selection
      7. 7.3.7  Internal Synchronous Rectification
      8. 7.3.8  Current Limit
      9. 7.3.9  Timed Current Limit
      10. 7.3.10 Thermal Overload Protection
      11. 7.3.11 Start-Up
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Low-Power Mode
      3. 7.4.3 Standby Mode
      4. 7.4.4 Active Mode
      5. 7.4.5 User States
    5. 7.5 Programming
      1. 7.5.1 RFFE Interface
      2. 7.5.2 Supported Command Sequences
      3. 7.5.3 Device Enumeration
      4. 7.5.4 GPO1
      5. 7.5.5 Trigger Registers
      6. 7.5.6 Control Interface Timing Parameters
    6. 7.6 Register Map
  8. Application Information
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Recommended External Components
          1. 8.2.2.1.1 Inductor Selection
          2. 8.2.2.1.2 Capacitor Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout Considerations
    1. 10.1 Layout Guidelines
      1. 10.1.1 1. Overview
      2. 10.1.2 2. PCB
        1. 10.1.2.1 Energy Efficiency
        2. 10.1.2.2 EMI
      3. 10.1.3 3. Manufacturing Considerations
    2. 10.2 4. Layout Examples
      1. 10.2.1 DC-DC Converter
        1. 10.2.1.1 Star Connection Between VBATT, DC-DC Converter, and PA
          1. 10.2.1.1.1 VBATT Star Connection
    3. 10.3 DSBGA Package Assembly and Use
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VBATT pins to GND (PVIN, SVDD, PACB to PGND, SGND, BGND) –0.2 6 V
FB, SW, GPO1, ACB, VIO, SDATA, SCLK GND – 0.2 V See(3) V
Continuous power dissipation(4) Internally limited
Maximum operating junction temperature, TJ-MAX 150 °C
Maximum lead temperature (soldering 10 seconds) 260 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the potential at the GND pins.
(3) Abs Max for FB, SW, GPO1, ACB, VIO, SDATA, SCLK is the lessor of VIN + 0.2 V, or 6 V.
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typical) and disengages at TJ = 125°C (typical).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage range PVIN, SVDD, PACB 2.7 5.5 V
Input voltage range VIO 1.65 1.95 V
Recommended current load 0 2.5 A
Junction temperature, TJ –30 125 °C
Ambient temperature, TA(1) –30 90 °C
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be de-rated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX). At higher power levels duty cycle usage is assumed to drop (that is, maximum power 12.5% usage is assumed) for GSM/GPRS mode.

6.4 Thermal Information

THERMAL METRIC(1) LM3263 UNIT
YFQ (DSBGA)
16 PINS
RθJA Junction-to-ambient thermal resistance 77.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.4 °C/W
RθJB Junction-to-board thermal resistance 15.4 °C/W
ψJT Junction-to-top characterization parameter 2.0 °C/W
ψJB Junction-to-board characterization parameter 15.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted, all limits apply to the Typical Application with VBATT = 3.8 V (= PVIN = SVDD = PACB), VIO = 1.8 V, TJ = 25°C.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB,MIN Feedback voltage at minimum setting VSET[7:0] = 1Bh, SMPS_CFG[5] = 1b 0.4 V
VSET[7:0] = 1Bh, SMPS_CFG[5] = 1b
−30°C ≤ TJ = TA ≤ 90°C
0.35 0.45
VFB,MAX Feedback voltage at maximum setting VSET[7:0] = F0h, VBATT = 3.9 V, SMPS_CFG[5] = 0b 3.6 V
VSET[7:0] = F0h, VBATT = 3.9 V, SMPS_CFG[5] = 0b
−30°C ≤ TJ = TA ≤ 90°C
3.492 3.708
ISHDN Shutdown supply current SW = 0 V, VIO = 0 V(4) 0.02 µA
SW = 0 V, VIO = 0 V(4)
−30°C ≤ TJ = TA ≤ 90°C
4
IL-PWR Low-power mode supply current VSET[7:0] = 00h 0.225 µA
IQ-PFM PFM mode supply current into SVDD No switching(5), SMPS_CFG[5] = 1b 360 µA
No switching(5), SMPS_CFG[5] = 1b
−30°C ≤ TJ = TA ≤ 90°C
425
IQ PWM PWM mode supply current No switching(5), SMPS_CFG[5] = 0b 1240 µA
No switching(5), SMPS_CFG[5] = 0b
−30°C ≤ TJ = TA ≤ 90°C
1400
ILIM, PFET Transient Positive transient peak current limit VSET[7:0] = 64h(6) 1.9 A
VSET[7:0] = 64h(6)
−30°C ≤ TJ = TA ≤ 90°C
2.1
ILIM, PFET Steady-State Positive steady-state peak current limit VSET[7:0] = 64h(6) 1.45 A
VSET[7:0] = 64h(6)
−30°C ≤ TJ = TA ≤ 90°C
1.35 1.65
ILIM, P-ACB Positive active current assist peak current limit VSET[7:0] = 64h(6) 1.7 A
VSET[7:0] = 64h(6)
−30°C ≤ TJ = TA ≤ 90°C
1.4 2
ILIM,NFET NFET current limit VSET[7:0] = A7h(6) −1.5 A
ƒOSC Average Internal oscillator frequency VSET[7:0] = A7h 2.7 MHz
VSET[7:0] = A7h
−30°C ≤ TJ = TA ≤ 90°C
2.43 2.97
IVIO-IN VIO voltage average input current Average during a 26-MHz write 1.25 mA
VIORST RFFE I/O voltage reset voltage VIO toggled low 0.45 V
IINVIO VIO reset current VIO = 0.45 V −1 1 µA
IIN SDATA, SCLK input current VIO = 1.95 V −1 1 µA
VIH Input high-level threshold SDATA, SCLK 0.4 × VIO 0.7 × VIO V
VIL Input low-level threshold SDATA, SCLK 0.3 × VIO 0.6 × VIO V
VIH-GPO Input high-level threshold GPO1 −30°C ≤ TJ = TA ≤ 90°C 1.35 V
VIL-GPO Input low-level threshold GPO1 −30°C ≤ TJ = TA ≤ 90°C 0.67 V
VOH Output high-level threshold SDATA ISDATA = 2 mA VIO × 0.8 VIO + 0.01 V
VOL Output low-level threshold SDATA ISDATA = –2 mA VIO × 0.2 V
VOH-GPO Output high-level threshold GPO IOUT = ±200 µA VIO – 0.15 VIO + 0.1 V
VOL-GPO Output low-level threshold GPO –0.4 0.3 V
VSET-LSB Output voltage LSB VSET[7:0] = A7h to A8h 15 mV
(1) All voltages are with respect to the potential at the GND pins.
(2) Minimum and Maximum limits are specified by design, test, or statistical analysis.
(3) The parameters in Electrical Characteristics are tested under open loop conditions at PVIN = SVDD = PACB = 3.8 V.
(4) Shutdown current includes leakage current of PFET.
(5) IQ specified here is when the part is not switching.
(6) Current limit is built-in, fixed, and not adjustable.

6.6 System Characteristics

The following spec table entries are specified by design and verifications providing the component values in the Typical Application are used (L = 1.5 µH, DCR = 120 mΩ, TOKO DFE201610MT-1R5N, CIN = 10 µF, 6.3 V, 0402, Samsung CL05A106MP5NUN, COUT = 10 µF + 4.7 µF + 3 × 1 µF; 10 V, 0402, Samsung CL05A106MP5NUN, CL05A475MPNRN; 6.3 V, 0201, TDK, C0603X5R0J105M). These parameters are not verified by production testing. Minimum and maximum values are specified over the ambient temperature range TA = –30°C to +90°C. Typical values are specified at VBATT = 3.8 V (= PVIN = SVDD = PACB), VIO = 1.8 V, SMPS_CFG = 20h, and TA = 25°C, unless otherwise stated.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TON Turnon time (time for output to reach 95% of 3.4-V value from the end of the SCLK pulse) VBATT = 4.2 V, VSET[7:0] =00h to E3h, VSET = 3.4 V, IOUT ≤ 1 mA 50 µs
TRESPONSE Time for VOUT to rise from 0.09 V to 3.4 V (3.07 V, 90% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 68 Ω
VSET[7:0] = 06h to E3h
SMPS_CFG[5] = 0b/1b
15 µs
Time for VOUT to fall from 3.4 V to 0.09 V (0.42 V, 10% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 68 Ω
VSET[7:0] = E3h to 06h
SMPS_CFG[5] = 0b/1b
15
Time for VOUT to rise from 0.8 V to 3.3 V (3.05V, 90% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 20 Ω
VSET[7:0] =36h to DCh
7.4 12
Time for VOUT to fall from 3.3 V to 0.8 V (1.05 V, 10% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 20 Ω
VSET[7:0] = DCh to 36h
6.8 12
Time for VOUT to rise from 1.4 V to 3.4 V (3.2 V, 90% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 6.8 Ω
VSET[7:0] = 5Eh to E3h
10
Time for VOUT to fall from 3.4 V to 1.4 V (1.6 V, 10% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 6.8 Ω
VSET[7:0] = E3h to 5Eh
10
Time for VOUT to rise from 1.8 V to 2.8 V (2.7 V, 90% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 2.2 Ω
VSET[7:0] = 78h to BBh
SMPS_CFG[5] = 0b
15
Time for VOUT to fall from 2.8 V to 1.8 V (1.9 V, 10% of delta VOUT from the end of SCLK pulse) VBATT = 3.8 V, RLOAD = 2.2 Ω
VSET[7:0] = BBh to 78h
SMPS_CFG[5] = 0b
15
TBypass Time for VSET to rise from 0.09V to PVIN after BYPASS transition (90%) VBATT = 3.6 V, IOUT ≤ 1 mA,
VSET[7:0] = 06h to FFh
20 µs
Rtot-drop Total dropout resistance in bypass mode VSET[7:0] = FAh, Max value at VBATT = 3.1 V, Inductor DCR ≤ 151 mΩ 45 55
IOUT Maximum load current in PWM mode Switcher + ACB 2.5 A
IOUT, PU Maximum output transient pullup current limit Switcher + ACB(6) 3
IOUT, PD, PWM PWM maximum output transient pulldown current limit Switcher + ACB(6) −3
IOUT, MAX_PFM Maximum output load current in PFM mode VBATT = 3.8 V, VSET = 3.2 V 60 mA
Linearity Linearity in control range of VSET = 0.4 V to 3.6 V VBATT = 3.9 V(2), Monotonic in nature;
VSET[7:0] = 1Bh to F0h,
SMPS_CFG[5] = 0b
–3% 3%
–50 50 mV
η Efficiency VBATT = 3.8 V, VSET= 0.5 V,
IOUT = 5mA
52% 56%
VBATT = 3.8 V, VSET= 1.8 V,
IOUT = 10 mA
78% 82%
VBATT = 3.8 V, VSET= 1.6 V,
IOUT = 130 mA
83% 89%
VBATT = 3.8 V, VSET = 2.5 V,
IOUT = 250 mA
90% 94%
VBATT = 3.8 V, VSET = 3.4 V,
IOUT = 550 mA
93% 95%
VBATT = 3.8 V, VSET = 1 V,
IOUT = 400 mA, SMPS_CFG[5] = 0b
81% 85%
VBATT = 3.8 V, VSET = 3.5 V,
IOUT = 1900 mA, SMPS_CFG[5] = 0b
89% 92%
VRIPPLE 2.7-MHz PWM normal operation ripple VBATT = 3.2 V to 4.3 V, VSET = 0.4 V to 3.6 V, RLOAD = 1.9 Ω(1)
SMPS_CFG[5]= 0b
1 3 mVpp
Ripple voltage at pulse skipping condition VBATT = 3.2 V, VSET = 3 V,
RLOAD = 1.9 Ω (1)
SMPS_CFG[5]= 0b
8
PFM ripple voltage VBATT = 3.2 V, VSET = 3 V,
IOUT = 40 mA
50
VBATT = 3.2 V, VSET = 2.5 V,
IOUT = 10 mA
50
VBATT = 3.2 V, VSET< 0.5 V,
IOUT = 5 mA
50
Line_tr Line transient response VBATT = 3.6 V to 4.2 V,
TR = TF = 10 µs,
VSET = 3.2 V,
IOUT = 500 mA
50 mVpk
Load_tr Load transient response VSET = 3 V,
TR = TF = 10 µs,
IOUT = 0 A to 1.2 A,
SMPS_CFG[5] = 0b
60 mVpk
Max Duty Cycle Maximum duty cycle 100%
PFM_Freq Minimum PFM frequency VBATT = 3.2 V, VSET = 1 V,
IOUT = 10 mA
100 160 KHz
VBATT = 3.2 V, VSET = 0.5 V,
IOUT = 5 mA
34 55
NSET VSET DAC number of bits Monotonic 8 Bits
TSETUP Power-up time (time for RFFE bus active after VIO applied) VIO = Low to 1.65 V 50 ns
TVIO-RST VIO supply reset timing VIO = 0.45 V 10 µs
(1) Ripple voltage must be measured at COUT electrode on a well-designed PC board using suggested inductor and capacitors.
(2) Linearity limits are ±3% or ±50 mV whichever is larger.

6.7 Typical Characteristics

VBATT = 3.8 V, TA = 25°C, unless otherwise noted
LM3263 C001_SNVS837.png
No load
Figure 1. Input Current (PFM) vs Input Voltage
LM3263 C003_SNVS837.png
Figure 3. Average Switching Frequency vs Input Voltage
LM3263 C005_SNVS837.png
VOUT = 3.4 V
Figure 5. Output Voltage vs Input Voltage
LM3263 C007_SNVS837.png
Auto-PFM Mode IOUT = 150 mA to 750 mA
Figure 7. Efficiency vs Load Current
LM3263 C009_SNVS837.png
Forced PWM Mode IOUT = 1 A to 2.5 A
Figure 9. Efficiency vs Load Current
LM3263 C011_SNVS837.png
Forced PWM VOUT = 1.4 V to 3.4 V RLOAD = 1.9 Ω
Figure 11. VOUT Transient
LM3263 2_Load_Transient.gif
VOUT = 2.5 V IOUT= 0 mA to 300 mA
Figure 13. Load Transient
LM3263 4_Load_Transient.gif
VBATT = 4.2 V VOUT = 3 V IOUT= 0 mA to 1.2 A
Figure 15. Load Transient
LM3263 6_Line_Transient.gif
VBATT = 3.6 V to 4.2 V VOUT = 1 V RLOAD = 6.8 Ω
Figure 17. Line Transient
LM3263 C002_SNVS837.png
No load
Figure 2. Input Current (PWM) vs Input Voltage
LM3263 C004_SNVS837.png
Figure 4. Output Voltage vs VSET_CTRL Setting
LM3263 C006_SNVS837.png
Auto-PFM Mode IOUT = 10 mA to 150 mA
Figure 6. Efficiency vs Load Current
LM3263 C008_SNVS837.png
Forced PWM Mode IOUT = 100 mA to 1000 mA
Figure 8. Efficiency vs Load Current
LM3263 C010_SNVS837.png
Auto PFM VOUT = 0.4 V to 3.4 V RLOAD = 6.8 Ω
Figure 10. VOUT Transient
LM3263 1_Load_Transient.gif
PFM Mode VOUT = 1 V IOUT= 0 mA to 60 mA
Figure 12. Load Transient
LM3263 3_Load_Transient.gif
VOUT = 3 V IOUT= 0 mA to 700 mA
Figure 14. Load Transient
LM3263 5_Line_Transient.gif
VBATT = 3.6 V to 4.2 V VOUT = 2.5 V RLOAD = 6.8 Ω
Figure 16. Line Transient
LM3263 Timed-Current_Limit.gif
VBATT = 4.2 V VOUT = 2.5 V RLOAD = 6.8 Ω to 0 Ω
Figure 18. Timed-Current Limit