SNOSC66D MARCH   2012  – September 2016 LM3017

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 True Shutdown
      2. 7.3.2 Operation of the EN/MODE Pin
      3. 7.3.3 EN/MODE Control
      4. 7.3.4 Overvoltage Protection
      5. 7.3.5 Thermal Protection
      6. 7.3.6 Current Limit Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Boost Mode
      3. 7.4.3 Standby Mode
      4. 7.4.4 Start-Up Boost Mode
      5. 7.4.5 Pass-Through Mode
      6. 7.4.6 Start-Up Pass-Through Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Programming the Output Voltage
        2. 8.2.2.2  Power Inductor Selection
        3. 8.2.2.3  Setting the Output Current
        4. 8.2.2.4  Additional Slope Compensation
        5. 8.2.2.5  Current Limit With Additional Slope Compensation
        6. 8.2.2.6  Power Diode Selection
        7. 8.2.2.7  Low-Side MOSFET Selection (Switching MOSFET)
        8. 8.2.2.8  Pass MOSFET Selection (High-Side MOSFET)
        9. 8.2.2.9  Input Capacitor Selection
        10. 8.2.2.10 Output Capacitor Selection
        11. 8.2.2.11 VCC Decoupling Capacitor
        12. 8.2.2.12 Slope Compensation Ramp
        13. 8.2.2.13 Control Loop Compensation
          1. 8.2.2.13.1 Compensation Network Components Calculations
          2. 8.2.2.13.2 Compensation Design Example
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Filter Capacitors
      2. 10.1.2 Sense Lines
      3. 10.1.3 Compact Layout
      4. 10.1.4 Ground Plane and Vias
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VIN to PGND, AGND –0.3 20 V
FB, COMP, VCC,DR to PGND, AGND –0.2 6 V
EN/MODE –0.2 5.5 V
VG –0.3 VIN + 6 V
ISEN to PGND, AGND VIN – 0.3 VIN V
Peak low side driver output current 1 A
Power dissipation Internally limited
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN Supply voltage 5.4 18 V
TJ Junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM3017 UNIT
NKL (WQFN)
10 PINS
RθJA Junction-to-ambient thermal resistance 79.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 29.8 °C/W
RθJB Junction-to-board thermal resistance 21.4 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 20.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Minimum and maximum limits are specified through test, design, or statistical correlation, and apply over the junction temperature range at TJ = –40°C to 125°C. Typical values are provided for reference purposes only, and represent the most likely parametric norm at TJ = 25°C. VIN = 12 V (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
VFB Feedback voltage Vcomp = 1.4 V 1.256 1.27 1.282 V
ΔVLINE Feedback voltage line regulation 5 V ≤ VIN ≤ 18 V 0.33%
VUVLO Input undervoltage lockout voltage Rising 4.6 4.82 4.9 V
Input undervoltage lockout hysteresis Falling, below VUVLO 280 mV
FSW Nominal switching frequency EN/MODE = 1.6 V 550 600 635 kHz
RDS(ON) Low-side NMOS driver resistance,
top driver FET
VIN = 5 V, IDR = 0.2 A 3.4 Ω
Low-side NMOS driver resistance,
bottom driver FET
VIN = 5 V, IDR = 0.2 A 1
VCC Driver voltage supply VIN < 6 V VIN V
VIN ≥ 6 V 5.6
Dmax Maximum duty cycle 86%
Tmin(on) Minimum on-time 125 ns
IQ-boost Supply current in boost mode,
no switching
EN/MODE = 1.6 V, FB = 1.4 V 5.2 9 mA
IQ-SD Supply current in shutdown mode EN/MODE pin = 0.4 V 0.025 1 µA
IQ-pass Supply current in pass-through mode EN/MODE = 2.6 V, FB = 1.4 V 1.4 2.3 mA
Ven-pass Pass-through mode threshold(3) Rising 2.19 2.4 2.56 V
Vmode-hyst Mode change hysteresis, falling(3) Falling 65 107 165 V
Ven-shutdown Shutdown mode threshold(3) Falling 0.2 0.4 0.59 V
Ven-boost Boost mode enable window(3) Rising 0.65 1.22 1.6 V
Ien EN/MODE pin bias current(4) EN/MODE = 1.6 V ±1 µA
VSENSE Cycle-by-cycle current limit threshold during boost mode EN/MODE = 1.6 V, FB = 50 V 142 170 182 mV
ΔVSC Short-circuit current limit threshold during boost mode EN/MODE = 1.6 V, FB = 0 V 18 30 42 mV
VSL Internal ramp compensation voltage 90 mV
VLIM1 Input current limit threshold voltage in pass-through mode during TLIM1(3) EN/MODE = 2.6 V 70 85 95 mV
ΔVLIM2 Input current limit threshold voltage in pass-through mode during TLIM2(3) EN/MODE = 2.6 V 14.5 18 21 mV
TLIM1 Curent limit time at TLIM1(3) 900 µs
TLIM2 Current limit time at TLIM2(3) 3.6 ms
TSC Current limit time at TSC(3) 900 µs
VOVP Upper-output overvoltage protection threshold Rising threshold measured at FB pin with respect to FB pin, VCOMP = 1.45 V 40 mV
Lower-output overvoltage protection threshold Falling threshold measured at FB pin with respect to FB pin, VCOMP = 1.45 V 26
VGS-on On-state drive voltage at VG pin(5) VIN = 5 V, ISEN = 5 V, IG = 0 A 3.8 4.9 V
VGS-off Off-state drive voltage at VG pin(6) Vin = 5 V, ISEN = VIN – 200 mV, IG = 0 A 5 mV
IG Maximum drive current at VG pin VIN = 5 V, ISEN = 5 V, VG = VIN 20 µA
Gm Error amplifier transconductance VCOM = 1.4 V, ICOMP = ±50 µA 340 522 900 µA/V
AVOL Error amplifier open-loop voltage gain VCOM = 1.2 V to 1.8 V, ICOMP = 0 A 190 313 450 V/V
RO Error amplifier open-loop output resistance(7) 600
IEAO Error amplifier output current swings Sourcing: VCOMP = 1.4 V, VFB = 1.1 V 27 66 115 µA
Sinking: VCOMP = 1.4 V, VFB = 1.4 V 49 68 125
VEAO Error amplifier output voltage limits Upper: VFB = 0 V, COMP pin floating 2.3 V
Lower: VFB = 1.4 V 0.82
Tr Drive pin rise time Cload = 3 nF, VDR = 0 V to 3 V 25 ns
Tf Drive pin fall time Cload = 3 nF, VDR = 3 V to 0 V 25 ns
TSD Thermal shutdown threshold 165 °C
TSD-hyst Thermal shutdown threshold hysteresis 10 °C
(1) All limits are specified at room temperature and at temperature extremes. All room temperatures are 100% production tested. All limits at temperature extremes are specified through correlation using Statistical Quality Control (SQD) methods. All limits are used to calculate Average Outgoing Quaity Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(4) The bias current flowing through this pin is compensated and can flow either into or out-of this pin.
(5) This is the gate-to-source voltage drive of Q2, when the controller turns on this FET.
(6) This voltage is measured from the VG pin to AGND, when the controller fully turns off Q2.
(7) This parameter is calculated from the error amplified Gm and AVOL, and is not tested.

6.6 Typical Characteristics

VIN = 12 V, TJ = 25°C, and see Figure 16 (unless otherwise noted).
LM3017 30180930.gif
Figure 1. Switching Frequency vs Temperature
LM3017 30180932.gif
Figure 3. Supply Current in Boost Mode (IQ-boost)
LM3017 30180934.gif
Figure 5. Current Limit Timing vs Temperature
LM3017 30180936.gif
Figure 7. Pass FET Drive Current vs Temperature
LM3017 30180956.gif
VOUT = 15 V
Figure 9. Efficiency
LM3017 30180958.gif
Figure 11. Line Regulation
LM3017 30180931.gif
Figure 2. Supply Current in Pass-Through Mode (IG-pass)
LM3017 30180933.gif
Figure 4. Minimum ON-Time vs Temperature
LM3017 30180935.gif
Figure 6. Pass FET Drive Voltage vs Input Voltage (VGS-on)
LM3017 30180937.gif
Figure 8. VCC Voltage vs Input Voltage
LM3017 30180957.gif
Figure 10. Load Regulation
LM3017 30180959.gif
VIN = 8 V
Figure 12. Start-Up Waveforms