SNVS118F december   1999  – may 2023 LM2594 , LM2594HV

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Description (continued)
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics – 3.3 V
    6. 7.6  Electrical Characteristics – 5 V
    7. 7.7  Electrical Characteristics – 12 V
    8. 7.8  Electrical Characteristics – Adjustable
    9. 7.9  Electrical Characteristics – All Output Voltage Versions
    10. 7.10 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Delayed Start-Up
      2. 8.3.2 Undervoltage Lockout
      3. 8.3.3 Inverting Regulator
      4. 8.3.4 Inverting Regulator Shutdown Methods
    4. 8.4 Device Functional Modes
      1. 8.4.1 Discontinuous Mode Operation
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Capacitor (CIN)
      2. 9.1.2 Output Capacitor (COUT)
      3. 9.1.3 Catch Diode
      4. 9.1.4 Inductor Selection
      5. 9.1.5 Output Voltage Ripple and Transients
      6. 9.1.6 Open Core Inductors
    2. 9.2 Typical Applications
      1. 9.2.1 Series Buck Regulator (Fixed Output)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Custom Design with WEBENCH® Tools
          2. 9.2.1.2.2 Inductor Selection (L1)
          3. 9.2.1.2.3 Output Capacitor Selection (COUT)
          4. 9.2.1.2.4 Catch Diode Selection (D1)
          5. 9.2.1.2.5 Input Capacitor (CIN)
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Series Buck Regulator (Adjustable Output)
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Programming Output Voltage
          2. 9.2.2.2.2 Inductor Selection (L1)
          3. 9.2.2.2.3 Output Capacitor Selection (COUT)
          4. 9.2.2.2.4 Feedforward Capacitor (CFF)
          5. 9.2.2.2.5 Catch Diode Selection (D1)
          6. 9.2.2.2.6 Input Capacitor (CIN)
        3. 9.2.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
      3. 9.4.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 Custom Design with WEBENCH® Tools
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines must be wide printed circuit traces and must be kept as short as possible. For best results, external components must be placed as close to the switcher lC as possible using ground plane construction or single point grounding.

If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, lC groundpath and COUT wiring can cause problems.

When using the adjustable version, take special care regarding as to the location of the feedback resistors and the associated wiring. Physically place both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.