SLUS696C June   2006  – February 2019

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Standard Serial Communication (SDQ) Timing
    7. 6.7 OTP Programming Specifications
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Non-Volatile Memory
      2. 7.3.2 Authentication
      3. 7.3.3 Communication and Power
    4. 7.4 Device Functional Modes
      1. 7.4.1 Profile Command
      2. 7.4.2 Sleep Mode Description
    5. 7.5 Programming
      1. 7.5.1 Communicating with the bq26100 Device
      2. 7.5.2 Memory Descriptions
        1. 7.5.2.1 Non-Volatile OTP Memory
          1. 7.5.2.1.1 General Use – Memory Function Commands 0xF0 (Read) and 0x0F (Write)
          2. 7.5.2.1.2 General Use — Memory Function Commands 0xFA (Read) and 0xAF (Write)
          3. 7.5.2.1.3 Status – Memory Function Commands 0xAA (Read) and 0x55 (Write)
            1. 7.5.2.1.3.1 PAGE LOCK (offset = D431h) [reset = 0h]
              1. Table 5. PAGE LOCK Field Descriptions
        2. 7.5.2.2 Non-Volatile EEPROM Memory
          1. 7.5.2.2.1 General Use – Memory Function Commands 0xE0 (Read) and 0x0E (Write)
      3. 7.5.3 SHA-1 Description
      4. 7.5.4 Key Programming Description
    6. 7.6 Register Maps
      1. 7.6.1 Volatile Register Memory
        1. 7.6.1.1 Message and Digest Registers – Memory Function Command 0xDD (Read) and 0x22 (Write)
        2. 7.6.1.2 Control and Version Registers – Memory Function Command 0x88 (Read) and 0x77 (Write)
          1. 7.6.1.2.1 CTRL Register (address = 0001h) [reset = 1h]
            1. Table 9. Control Register Field Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Communication and Power

The bq26100 device uses a single-wire communication protocol, SDQ, that allows for broadcast or targeted communication to a number of devices on the one-wire bus. Each device is programmed with a unique 64-bit address and the protocol consists of an automatic arbitration scheme that allows the host to determine the ID of every device on the bus.

The bq26100 device takes advantage of the pullup on the SDQ line to power a capacitor connected to the PWR pin and the charge on this capacitor is used parasitically when the SDQ line is low. As a result, there is no need for additional power to be supplied to the device.