通过 NTC 获取温度值的最基本方法是使用查找表。但是,查找表的数据阶跃通常为 1°C 或 5°C。执行查找功能时,查找表的温度数据阶跃为 1°C 或 5°C。若要提高分辨率,需对查找结果进行内插。内插是一个线性过程,因此,查找表中所选高低温度之间的温度值并非 NTC 自然曲线的一部分,而是查找表中两点之间的线性阶跃函数。
另一种获取温度值的方法是使用 Steinhart-Hart 方程。Steinhart-Hart 方程是涉及 NTC 在选定温度范围内三个不同温度下的电阻的模型。Steinhart-Hart 系数取决于热敏电阻的制造和器件型号以及工作温度范围。这种方法需要使用自然对数函数才能遵循 NTC 的非线性斜率。有必要对系数进行一次计算,然后将这些系数用于在控制器中运行的公式,以便从 NTC 获取实际温度值。在控制器中输入根据 ADC 位值计算得出的电阻值。在 Steinhart-Hart 方程中,使用三个计算系数,并使用计算得出的电阻来运行公式。这种方法非常可靠,并且比使用插值的查找函数更加准确。因为 Steinhart-Hart 方程使用自然对数,所以需要大量处理器时间和系统资源来完成计算。
运用新技术。德州仪器 (TI) 拥有全新的 TMP6 硅热敏电阻,该器件具有线性 PTC(正温度系数)斜率。大多数工程师都将热敏电阻视作电阻器。TMP6 系列器件基于 CMOS 深 N 阱电阻器,因而可将其视为电阻器,但它实际上是硅。
TMP6 器件的电阻值不能直接用万用表测量。如需获得 TMP6 的电阻值,必须根据 ADC 电压进行计算。TI 提供电阻查找表,与 NTC 类似。但是,应根据电压斜率计算电阻值,而不是根据电阻值计算电压斜率。如果遵循 TI 的指南,这些器件将比 NTC 更精确。
虽然大多数热敏电阻都使用电阻查找表,但 TMP6 系列可将由 ADC 测得的电压直接转换为温度,无需考虑电阻。使用电压来获得温度时,所需的数学计算更简单且更精确。无需计算压降和电流,从而减少了计算量,能够快速且非常准确地使用多项式方程。该器件的线性斜率支持使用不同类型的数学运算,可使用简单四阶多项式非常准确地建立斜率曲线模型。这听起来很复杂,但是,借助 Microsoft® Excel®,可轻松创建四阶多项式,并轻松使用加法和乘法进行计算。无需自然对数,无需查找表,也不需要内插,可直接根据 ADC 电压获取温度值。
Microsoft® and Excel®are reg TMs ofMicrosoft Corporation.
Other TMs
若要采集创建多项式所需的数据,请在测试板上安装所需器件。测试板可以是 EVM 或任何 UUT(待测器件)板。需要使用数据记录法采集每个优选的特定阶跃处的 ADC 电压。以 –40°C 至 125°C 的温度范围为例,将 UUT 置于能从 –40°C 快速升温至 125°C 的温度室中。在变化过程中,温度始终沿选定方向慢速变化。必须使用斜率对温度变化过程进行编程。温度斜率必须为 2-3min/℃,或全程耗时约 330 分钟。在温度室中,必须留出足够的时间以使整个电路板在给定温度下达到饱和。小型电路板能够迅速饱和,且更快速地达到某一温度,因此可快速完成测试。如果采集数据时的阶跃为 1°C,则必须每隔几秒就采集一次温度,这样才能使基准温度与该温度下的 UUT ADC 电压对齐。这种情况下通常需要使用高端的温度室控制器。
简单的方法是将温度室设置为所需温度,并留出时间让 UUT 达到设置温度或使 UUT 达到饱和,然后记录该温度下的 ADC 电压。为下一数据点设置温度并重复该过程,直到完成整个数据点范围的采集。NTC 的标准阶跃为 1℃,共 165 阶。但是,在整个温度范围内,TI TMP6 器件都具有高线性度,因此,5°C 的阶跃非常适合这些器件。以 5°C 为阶跃,从 –40°C、–35°C、–30°C,一直到 115°C、120°C 和 125°C 采集 33 个数据点。在 Microsoft Excel 数据表中按顺序对齐电压与温度,如 图 1-1 所示。左侧为电压,右侧为温度。在该过程后期,这种设置方式的重要性更加凸显。
绘图的第一步是选择正确的数据图表类型。面对折线图和散点图时,很容易选错绘图类型。两者看起来非常相似,尤其是所显示的散点图带有连接线时。这些图表类型在横轴和纵轴上显示数据的方式明显不同。
在折线图中,数值显示为沿横轴均匀分布的两个独立数据点。这是因为,在折线图中,纵轴为数值轴,横轴为类别轴。类别轴不显示值,而是显示均匀分布的数据分组(类别)。因为数据只有值而没有类别,Microsoft Excel 会沿类别轴自动生成类别编号,在 x 轴上使用数字 1 至 9。可以更改类别轴,并且可以在 x 轴上使用其他数字集,但其仍是类别分组。
相反,散点图有两条数值轴,横轴显示数值而不是类别。因此,散点图在横轴上以 x 值表示数据值,在纵轴上以 y 值表示所选基准值。这种图表类型有两条数值轴,因此可在每个 x 值和 y 值的交点处显示单个数据点。
所选第一列为 x 轴,而第二个数据列为 y 轴。本文旨在了解每个温度值所需的 ADC 电压值。图 2-1 所示为温度(y 轴)以及与之相交的电压(x 轴),基于曲线图,使用多项式方程,可根据已知电压计算温度。
本节介绍了如何使用 Microsoft Excel 创建散点图。
完成上述步骤后可得到类似 图 3-1 所示的散点图,左侧 y 轴显示温度数据,底部 x 轴显示电压数据。
多项式曲线拟合是指构建与一系列数据点理想拟合的曲线或数学函数的过程。在数学领域,多项式是由不定式和系数组成的表达式,仅涉及变量的加、减、乘和非负整数幂运算。理论上,多项式系数总是为正,函数包含加、减、乘运算。编程旨在修正代码,只需更改系数。在代码中,多项式方程修改为仅使用加法和乘法,因此公式保持不变。因此,正负系数用于执行所需的加减运算。对于 TMP6 器件,使用四阶多项式来实现 PTC 热敏电阻近线性曲线的理想拟合。
按照以下步骤,利用之前创建的 Microsoft Excel 散点图来创建多项式。对于该过程中的所有步骤,请遵循 图 4-1 所示流程。
系数保留 6 位小数,以便尽量保持计算准确性。图 4-2 所示为通过更改标签格式来获得所需系数位数的方法。
现在,可从趋势线标签中复制公式和系数,并将其作为文本粘贴到电子表格中。
其中
切记,如需在公式中减去一个数字,请保留减号 (–) 与系数。现在,可在代码中创建多项式公式,只需像 Equation1 所示的主多项式那样做加法。添加负数等同于做减法。
现在,在多项式公式中,将 X4 到 X 替换为 ADC 电压测量值。使用在新公式中创建的系数。