ZHCY217 February 2025
采用 48V 低压轨时,面临的设计挑战包括瞬变电压、爬电距离和电气间隙要求、电磁兼容性 (EMC) 标准,以及集成电路 (IC) 成本。
瞬变电压是 48V 系统中的主要讨论话题。如今,12V 系统已经广为人知,国际标准化组织 (ISO) 16750-2 等标准规定了最严苛工况(如负载突降)下的电压瞬变曲线。而对于 48V 系统,现行标准(ISO 21780 和 Liefervorschriften [LV] 148)是专门针对要求过电压点高达 70V 的 MHEV 制定的。但是,如果考虑到开关瞬变或元件裕量,元件额定电压将远高于 70V。
MHEV 标准虽然可以用作起点,但对于不使用大功率起动发电机系统,而是通过高压电池生成 48V 电压的电动或混合动力系统而言,这些标准不一定适用。有关 BEV 48V 低电压网的具体标准仍在制定中,但 OEM 可能会开始制定自有标准,以将线路瞬变电压控制在 70V 以下。图 8 将潜在的 BEV 标准与现有的 ISO 21780标准进行了比较。
图 8 潜在 BEV 标准和 ISO 21780
的瞬变电压对比。虽然 60V 和 70V 之间的差异看似微小,但适应更高电压的 IC 成本并不一定呈线性增长。此外,即使有可能限制电源电压范围,但仍然必须考虑可能发生的线束故障模式事件,而现行标准(如 ISO 7637-2)已对此进行了规范。
爬电距离与电气间隙要求是指根据行业标准,对 PCB 上所有导电部件之间最短距离的测量。当两点之间的电压超过击穿电压时,会产生电弧,而爬电距离与电气间隙是防止电弧的关键设计参数。存在多种不同的爬电距离与电气间隙标准(国际电工委员会 60664-1 与印制电路协会 2221A),而 OEM 甚至可能有自己的内部指导。从 12V 升级到 48V 将提升爬电距离与电气间隙要求,直接影响 IC 封装、PCB 布局,以及线束连接器等。
48V 系统的一个更细微影响是,虽然有助于减少传导损耗,但开关损耗会增加。这一点在针对开关电源转换器(如 DC/DC 转换器和电机驱动器)的 EMC 测试中将产生重要影响。将电压 (VDS) 从 12V 提高到 48V 可以降低电流 (IDS)。但是,如果 48V 系统中的转换率 (tR + tF) 仍与 12V 系统相同,那么功率开关损耗 (PSW) 将变为四倍。
虽然还有更多的因素会影响开关损耗,但 图 9 说明了在 48V 系统中,转换率如何影响开关损耗。有关减少 DC/DC 转换器中传导发射的更多信息,请参阅应用说明“降低 48V 汽车应用中降压转换器的传导 EMI”。
图 9 开关损耗对 EMC 的影响。