ZHCY217 February 2025
在为 48V 架构优化线束时,OEM 需要评估不同的架构。图 4 至 图 6 展示了实现 48V 低压轨时的三种选项:48V 主配电和 12V 本地配电、48V 配电和 12V 配电,或仅 12V 配电和 48V 高电流负载。
图 4 48V 架构(48V 主配电,12V 本地配电)。
图 5 48V 和 12V 配电 — ZCM 48V 和 12V。
图 6 12V 主配电,48V 高电流负载。对于 48V 设计,破坏性最小的方法是使用 48V 电压轨为高电流负载供电,并将其他所有负载维持在 12V。48V 和 12V 可分配给区域控制模块或其他 ECU,但这种方法会带来一些挑战。两种不同电压的分配使线束布线成为一个关键因素,因为在同一线束中布设 12V 和 48V 可能导致从 12V 到 48V 系统之间出现短路。对功能安全的考量也会增加成本,因为可能需要冗余的 12V 和 48V 电源。
更激进的设计变更是直接采用 48V 配电架构,并根据需要在本地生成 12V 轨。带有本地 12V 电压的 48V 配电是一种最佳架构,能够实现转换至 48V 的全部优势,因为它最大限度地减少了线束尺寸和成本。
在带有本地 12V 电压的 48V 配电中,有许多不同的选项,可用于在 ECU 上形成本地 12V 电压轨,或用于选择完全不同的电压(25V、16V、5V、3.3V)。图 7 为 48V 系统提供了两种可能的电源架构:分布式 12V 和集中式 12V。
图 7 在 ECU 处进行的从 48V 向其他电压的转换。在分布式架构中,多个功率要求较低的 DC/DC 转换器可为不同的负载组生成 12V 电压轨。这种方法可以使用集成了金属氧化物半导体场效应晶体管的 DC/DC 转换器,还可以自由选择电压(如 48V 至 3.3V),并改善 PCB 上的热分布。如果 OEM 希望重复使用现有的 12V 设计,集中式 12V 电压轨是更容易实现的方案。在此架构中,一个始终开启的 DC/DC 转换器为功能安全关键负载供电,而另一个对功率要求较高的 DC/DC 转换器则为 12V 系统的其余部分供电。另一种选项是使用双向 48V 至 12V DC/DC 转换器,让电机的反电动势或 12V 电压轨的正瞬变电压能量流回 48V 电源轨。