ZHCT819 August 2024 TPS1200-Q1 , TPS1211-Q1
如图 5 所示,PCB 中的高侧驱动器输出通过 1 米到几米不等的长电缆连接到远程 ECU。例如,一条 50A 导线 (8AWG) 线束具有 2mΩ/米和 1.5µH/米的特性。D1 二极管是系统设计的一部分,可为电缆线束电感电流提供续流路径。高侧驱动器具有强大的栅极驱动输出,能够在较短 (<1µs) 的导通和关断时间内并联驱动 FET,从而提供过流和短路保护。电缆寄生电容、D1 二极管和高侧 MOSFET 构成典型的降压稳压器配置。
启动期间,未充电的输出电容器会吸收浪涌电流,并在浪涌电流达到短路保护阈值 (ISCP) 时触发短路事件。高侧驱动器可以关断电源路径并在重试周期 (TAUTO-RETRY) 过后重新执行导通。此过程一直持续到输出电容充满电为止(如图 6 所示),之后高侧驱动器进入正常运行状态并驱动负载。
图 7 展示了控制操作。如图所示,这种方法有两个变量 ISCP 和 TAUTO-RETRY,需要根据输入电压 (VIN)、负载电容和所需充电时间为高侧驱动器设置这两个变量。较高的 ISCP 阈值或较短的 TAUTO-RETRY 延迟可实现更快的输出充电,因此该解决方案适用于任何负载电容值。
图 7 PWM 充电控制方法的流程图。此解决方案利用了典型高侧驱动器系统中的现有可用空间(电缆线束电感和 D1 二极管),并通过以开关模式运行高侧 MOSFET 来创建一种高效的充电方法。与传统方法不同,建议的解决方案不再依赖于 FET SOA,不再需要庞大的预充电电阻器,也不需要任何预充电 FET 和驱动器。此解决方案使用高侧驱动器固有的短路保护功能,并可以在没有任何外部控制信号或复杂算法的情况下自主运行。