ZHCSMK4B September   2022  – January 2025 ADS131B26-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
    7. 5.7 开关特性
    8. 5.8 时序图
    9. 5.9 典型特性
  7. 参数测量信息
    1. 6.1 温漂测量
    2. 6.2 增益漂移测量
    3. 6.3 噪声性能
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 命名规则
      2. 7.3.2 精密电压基准(REFA、REFB)
      3. 7.3.3 时钟(MCLK、OSCM、OSCD)
      4. 7.3.4 ADC1y
        1. 7.3.4.1 ADC1y Input Multiplexer
        2. 7.3.4.2 ADC1y 可编程增益放大器 (PGA)
        3. 7.3.4.3 ADC1y ΔΣ 调制器
        4. 7.3.4.4 ADC1y 数字滤波器
        5. 7.3.4.5 ADC1y 偏移和增益校准
        6. 7.3.4.6 ADC1y 转换数据
      5. 7.3.5 ADC2y
        1. 7.3.5.1 ADC2y 输入多路复用器
        2. 7.3.5.2 ADC2y 可编程增益放大器 (PGA)
        3. 7.3.5.3 ADC2y ΔΣ 调制器
        4. 7.3.5.4 ADC2y 数字滤波器
        5. 7.3.5.5 ADC2y 偏移和增益校准
        6. 7.3.5.6 ADC2y 序列发生器
        7. 7.3.5.7 VCMy 缓冲器
        8. 7.3.5.8 ADC2y 测量配置
        9. 7.3.5.9 ADC2y 转换数据
      6. 7.3.6 ADC3y
      7. 7.3.7 通用数字输入和输出(GPIO0 至 GPIO4)
        1. 7.3.7.1 GPIOx PWM 输出配置
        2. 7.3.7.2 GPIOx PWM 输入回读
      8. 7.3.8 通用数字输入与输出(GPIO0A、GPIO1A、GPIO0B、GPIO1B)
      9. 7.3.9 监控器和诊断功能
        1. 7.3.9.1  电源监控器
        2. 7.3.9.2  时钟监控器
        3. 7.3.9.3  数字监测器
          1. 7.3.9.3.1 寄存器映射 CRC
          2. 7.3.9.3.2 内存映射 CRC
          3. 7.3.9.3.3 GPIO 读回
        4. 7.3.9.4  通信监控器
        5. 7.3.9.5  故障标志和故障屏蔽
        6. 7.3.9.6  FAULT 引脚
        7. 7.3.9.7  诊断和诊断过程
        8. 7.3.9.8  指示灯
        9. 7.3.9.9  转换和序列计数器
        10. 7.3.9.10 电源电压回读
        11. 7.3.9.11 温度传感器(TSA、TSB)
        12. 7.3.9.12 测试 DAC(TDACA、TDACB)
        13. 7.3.9.13 开路检测
        14. 7.3.9.14 主机检测和 MHD 引脚缺失
        15. 7.3.9.15 过流比较器(OCCA、OCCB)
          1. 7.3.9.15.1 OCCA 和 OCCB 引脚
          2. 7.3.9.15.2 过流指示响应时间
    4. 7.4 器件功能模式
      1. 7.4.1 上电和复位
        1. 7.4.1.1 上电复位 (POR)
        2. 7.4.1.2 RESETn 引脚
        3. 7.4.1.3 RESET 命令
      2. 7.4.2 工作模式
        1. 7.4.2.1 工作模式
        2. 7.4.2.2 待机模式
        3. 7.4.2.3 断电模式
      3. 7.4.3 ADC 转换模式
        1. 7.4.3.1 ADC1y 和 ADC3y 转换模式
          1. 7.4.3.1.1 连续转换模式
          2. 7.4.3.1.2 单次转换模式
          3. 7.4.3.1.3 全局斩波模式
            1. 7.4.3.1.3.1 全局斩波模式下的过流指示响应时间
        2. 7.4.3.2 ADC2y 序列发生器工作模式和序列模式
          1. 7.4.3.2.1 连续序列模式
          2. 7.4.3.2.2 单次序列模式
          3. 7.4.3.2.3 基于 ADC1y 转换启动的同步单次序列模式
    5. 7.5 编程
      1. 7.5.1 串行接口
        1. 7.5.1.1 串行接口信号
          1. 7.5.1.1.1 芯片选择 (CSn)
          2. 7.5.1.1.2 串行数据时钟 (SCLK)
          3. 7.5.1.1.3 串行数据输入 (SDI)
          4. 7.5.1.1.4 串行数据输出 (SDO)
          5. 7.5.1.1.5 数据就绪 (DRDYn)
        2. 7.5.1.2 串行接口通信结构
          1. 7.5.1.2.1 SPI 通信帧
          2. 7.5.1.2.2 SPI 通信字
          3. 7.5.1.2.3 STATUS 字
          4. 7.5.1.2.4 通信循环冗余校验 (CRC)
          5. 7.5.1.2.5 命令
            1. 7.5.1.2.5.1 NULL (0000 0000 0000 0000b)
            2. 7.5.1.2.5.2 RESET (0000 0000 0001 0001b)
            3. 7.5.1.2.5.3 LOCK (0000 0101 0101 0101b)
            4. 7.5.1.2.5.4 UNLOCK (0000 0110 0101 0101b)
            5. 7.5.1.2.5.5 WREG (011a aaaa aaa0 0nnnb)
            6. 7.5.1.2.5.6 RREG (101a aaaa aaan nnnn)
          6. 7.5.1.2.6 SCLK 计数器
          7. 7.5.1.2.7 SPI 超时
          8. 7.5.1.2.8 读取 ADC1A、ADC1B、ADC2A、ADC2B、ADC3A 和 ADC3B 转换数据
          9. 7.5.1.2.9 DRDYn 引脚行为
  9. 寄存器映射
    1. 8.1 寄存器
  10. 应用和实施
    1. 9.1 应用信息
      1. 9.1.1 未使用的输入和输出
      2. 9.1.2 最小接口连接
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
        1. 9.2.2.1 分流测量
        2. 9.2.2.2 电池组电压测量
        3. 9.2.2.3 其他电压测量
        4. 9.2.2.4 分流温度测量
        5. 9.2.2.5 模拟输出温度传感器测量
      3. 9.2.3 应用曲线
    3. 9.3 电源相关建议
      1. 9.3.1 电源选项
        1. 9.3.1.1 单个非稳压外部 4V 至 16V 电源(3.3V 数字 I/O 电平)
        2. 9.3.1.2 3.3V 单个稳压外部电源(3.3V 数字 IO 电平)
        3. 9.3.1.3 单个稳压外部 5V 电源(5V 数字 I/O 电平)
      2. 9.3.2 电源排序
      3. 9.3.3 电源去耦
    4. 9.4 布局
      1. 9.4.1 布局指南
      2. 9.4.2 布局示例
  11. 10器件和文档支持
    1. 10.1 文档支持
      1. 10.1.1 相关文档
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 商标
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

电池组电压测量

使用由 R23、R24、R25、R26和 R27 组成的高压电阻分压器将 800V 电池包电压分压到 ADC3A 的电压范围。在这种情况下,ADC3A 使用增益 = 1、以便测量 VIN3A = VVPA – VVNA = ±1.25V 的差分电压。电池包电压测量是一种 VNA 连接到 HV_BAT–= AGNDA 的单极单端测量。使用的 ADC3A 电压范围为 0V 至 1.25V。方程式 23 用于计算电阻分压器分压比。

方程式 23. VIN3A / VBAT_MAX = 1.25 V / 800 V = R27 / (R23 + R24 + R25 + R26 + R27)

在本例中,电阻分压器消耗的泄漏电流应小于 100μA,以避免电池电量的不必要耗尽。因此,分压器的电阻必须大于 RTOTAL
VBAT_MAX / ILEAKAGE = 800 V / 100 μA = 8 MΩ.。电阻器阻值的 MΩ 条件为:R23 = R24 = R25 = R26 = 2MΩ、R27 = 12kΩ。因此,当 VBAT_MAX = 800V 时,R27 上的最大电压为 1.2V,这为 ADC3A 的 1.25V 最大输入电压留下了一些余量。

汽车电路设计中可使用的单个电阻器的最大电阻通常被限制为特定的值。此外,单个电阻器可以承受的最大电压是有限的。因此,分压器的高侧电阻器被拆分为多个电阻器(R23、R24、R25 和 R26)。另一个原因是,如果单个电阻器发生短路故障,其余电阻器仍可将进入 ADC3A 模拟输入引脚(VPA 和 VNA)的电流限制在安全水平。