TIDT193 August   2020  – MONTH 

 

  1.   Description
  2. 1Test Prerequisites
    1. 1.1 Voltage and Current Requirements
    2. 1.2 Required Equipment
  3. 2Testing and Results
    1. 2.1 Thermal Images
    2. 2.2 Efficiency and Power Dissipation graphs
    3. 2.3 Efficiency and Power Dissipation Data
    4. 2.4 Voltage Regulation
  4. 3Waveforms
    1. 3.1 Start-up
    2. 3.2 Switch Node
    3. 3.3 Output Voltage Ripple
    4. 3.4 Load Transients
    5. 3.5 Short-Circuit Recovery Response
    6. 3.6 Input Voltage Transient Response

Thermal Images

This thermal image shows the operating temperature of the top side of the board with 100 VDC input and 14 V at 130-mA output at room temperature and no air flow.

GUID-20200728-CA0I-H5HV-GBLH-DG4JRZ0PQTVC-low.jpgFigure 2-1 Top-Side Thermal Image, 100-VDC Input, 14 V at 130-mA Output

This thermal image shows the operating temperature of the bottom side of the board with 100-VDC input and 14 V at 130-mA output at room temperature and no air flow.

GUID-20200728-CA0I-FTGF-XBRH-W2D9SZ32V7P1-low.jpgFigure 2-2 Bottom-Side Thermal Image, 100 VDC Input, 14 V at 130-mA Output.

This thermal image shows the operating temperature of the top side of the board with 30-VDC input and 14 V at 130-mA output at room temperature and no air flow.

GUID-20200728-CA0I-02DP-GDS1-WJPFVXRMS7QC-low.jpgFigure 2-3 Top-Side Thermal Image, 30-VDC Input, 14 V at 130-mA Output.
This thermal image shows the operating temperature of the bottom side of the board with 30-VDC input and 14 V at 130-mA output at room temperature and no air flow.

GUID-20200728-CA0I-9SK7-BFVC-KNGM5946ZBKL-low.jpgFigure 2-4 Bottom-Side Thermal Image, 30 VDC Input, 14 V at 130-mA Output.