SBOU327 December   2025 OPA598

 

  1.   1
  2.   Description
  3.   Get Started
  4.   Features
  5.   Applications
  6.   6
  7. 1Overview
    1. 1.1 Getting Started
      1. 1.1.1 Related Documentation From Texas Instruments
    2. 1.2 High-Voltage Warning and Safe Use
    3. 1.3 Electrostatic Discharge Caution
  8. 2Hardware
    1. 2.1 Jumper Blocks, Jacks, and Test Points
    2. 2.2 Inputs
    3. 2.3 Outputs
    4. 2.4 Enable or Disable
    5. 2.5 Status Flags
      1. 2.5.1 Circuit Protection
  9. 3Application Circuits
    1. 3.1 Setting Dual-Supply or Single-Supply Operation
      1. 3.1.1 Dual-Supply Operation Configuration
      2. 3.1.2 Single-Supply Operation Configuration
    2. 3.2 Common Op-Amp Configurations
      1. 3.2.1 Inverting Gain of –10 V/V
        1. 3.2.1.1 External Connections for –10 V/V Inverting Gain Configuration
        2. 3.2.1.2 Inverting Gain of –10 V/V Configuration Electrical Performance
      2. 3.2.2 Noninverting Gain of +11 V/V
        1. 3.2.2.1 External Connections for Noninverting Gain Configuration
        2. 3.2.2.2 Noninverting Gain Configuration Electrical Performance
      3. 3.2.3 Gain of +10 V/V Difference Amplifier
        1. 3.2.3.1 Jumper Shunt Locations for Difference-Amplifier Configuration
        2. 3.2.3.2 Gain of 10 V/V Difference Amplifier Configuration Electrical Performance
      4. 3.2.4 Improved Howland Current Pump
        1. 3.2.4.1 OPA598EVM Jumper Shunt Locations for an Improved Howland Current Pump
  10. 4Hardware Design Files
    1. 4.1 EVM Schematic
      1. 4.1.1 EVM Default Configuration
    2. 4.2 PCB Layout
    3. 4.3 Bill of Materials
  11. 5Reference
    1.     Trademarks

Gain of 10 V/V Difference Amplifier Configuration Electrical Performance

The VOUT voltage is 10x the voltage difference or signals applied at VIN+ J9 and VIN– J5. If 1 VDC is applied at the VIN+ input, and –1 V is applied to the VIN– input, the input voltage difference is 2 V, and VOUT is 20 VDC. For ac input signals applied to VIN+ and VIN–, VOUT is 10x the difference between the two input signals occurring at any particular instance.

The general expression for the output-to-input voltage relationship for the op amp difference-amplifier configuration is:

Equation 3. VOUT=VIN––RF1R1+VIN+1+RF1R1R8R5+R8