ZHCSQ75C June   2022  – March 2023 UCC28C50-Q1 , UCC28C51-Q1 , UCC28C52-Q1 , UCC28C53-Q1 , UCC28C54-Q1 , UCC28C55-Q1 , UCC28C56H-Q1 , UCC28C56L-Q1 , UCC28C57H-Q1 , UCC28C57L-Q1 , UCC28C58-Q1 , UCC28C59-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Detailed Pin Description
        1. 8.3.1.1 COMP
        2. 8.3.1.2 FB
        3. 8.3.1.3 CS
        4. 8.3.1.4 RT/CT
        5. 8.3.1.5 GND
        6. 8.3.1.6 OUT
        7. 8.3.1.7 VDD
        8. 8.3.1.8 VREF
      2. 8.3.2  Undervoltage Lockout
      3. 8.3.3  ±1% Internal Reference Voltage
      4. 8.3.4  Current Sense and Overcurrent Limit
      5. 8.3.5  Reduced-Discharge Current Variation
      6. 8.3.6  Oscillator Synchronization
      7. 8.3.7  Soft Start
      8. 8.3.8  Enable and Disable
      9. 8.3.9  Slope Compensation
      10. 8.3.10 Voltage Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 UVLO Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Primary-to-Secondary Turns Ratio of the Flyback Transformer (NPS)
        2. 9.2.2.2  Primary Magnetizing Inductance of the Flyback Transformer (LM)
        3. 9.2.2.3  Number of Turns of the Flyback Transformer Windings
        4. 9.2.2.4  Current Sense Resistors (R24, R25) and Current Limiting
        5. 9.2.2.5  Primary Clamp Circuit (D7, D1, D3, R2, R28) to Limit Voltage Stress
        6. 9.2.2.6  Primary-Side Current Stress and Input Capacitor Selection
        7. 9.2.2.7  Secondary-Side Current Stress and Output Capacitor Selection
        8. 9.2.2.8  VDD Capacitors (C12, C18)
        9. 9.2.2.9  Gate Drive Network (R14, R16, Q6)
        10. 9.2.2.10 VREF Capacitor (C18)
        11. 9.2.2.11 RT/CT Components (R12, C15)
        12. 9.2.2.12 HV Start-Up Circuitry for VDD (Q1, Q2, D2, D4, D6, D8, R5)
        13. 9.2.2.13 Desensitization to CS-pin Noise by RC Filtering, Leading-Edge Blanking, and Slope Compensation
        14. 9.2.2.14 Voltage Feedback Compensation
          1. 9.2.2.14.1 Power Stage Gain, Poles, and Zeroes
          2. 9.2.2.14.2 Compensation Components
          3. 9.2.2.14.3 Bode Plots and Stability Margins
          4. 9.2.2.14.4 Stability Measurements
      3. 9.2.3 Application Curves
    3. 9.3 PCB Layout Recommendations
      1. 9.3.1 PCB Layout Routing Examples
    4. 9.4 Power Supply Recommendations
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Related Links
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 静电放电警告
    7. 10.7 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Current Sense Resistors (R24, R25) and Current Limiting

An external series resistor (RCS) senses the current and converts this current into a voltage that becomes the input to the CS pin. The CS pin is the noninverting input to the PWM comparator. The CS input is compared to a signal proportional to the error amplifier output voltage. Calculate the current sense resistor based on the 2.2-A peak magnetizing current at PO_MAX of 48 W.

Equation 13. R C S = V C S _ M A X I M _ M A X = 1   V 2.2   A = 0.455  

For any input voltage, if the output is shorted to ground or the output voltage ramps up quickly during soft-start, the controller duty cycle can easily reach the maximum duty cycle (DMAX), so the power rating of the RCS resistor(s) must maintain adequate design margin to support those transient events.

Equation 14. I P R I _ R M S _ M A X = I M _ M A X × D M A X 3 = 1.24   A
Equation 15. P R C S = I R M S _ M A X 2 × R C S = 0.7   W

The applications schematic shows two 0.91-Ω resistors that are 2010 size in parallel, R24 and R25, for a combined resistance of 0.455 Ω. Each can handle 0.55 W at 105°C ambient and 1 W below 70°C ambient. For a traction inverter at 105°C ambient, the two paralleled resistors can handle the worst case and offer enough margin from resistor mismatch.