ZHCSK45C august   2019  – december 2020 UCC28740-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Revision History
  7. Revision History
  8. Pin Configuration and Functions
    1. 7.1 Pin Functions
  9. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Switching Characteristics
    7. 8.7 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Detailed Pin Description
      2. 9.3.2 Valley-Switching and Valley-Skipping
      3. 9.3.3 Startup Operation
      4. 9.3.4 Fault Protection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Secondary-Side Optically Coupled Constant-Voltage (CV) Regulation
      2. 9.4.2 Primary-Side Constant-Current (CC) Regulation
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 High Voltage Applications
    3. 10.3 Typical Application
      1. 10.3.1 Design Requirements
      2. 10.3.2 Detailed Design Procedure
        1. 10.3.2.1  Custom Design With WEBENCH® Tools
        2. 10.3.2.2  Standby Power Estimate and No-Load Switching Frequency
        3. 10.3.2.3  Input Bulk Capacitance and Minimum Bulk Voltage
        4. 10.3.2.4  38
        5. 10.3.2.5  Transformer Turns-Ratio, Inductance, Primary Peak Current
        6. 10.3.2.6  Transformer Parameter Verification
        7. 10.3.2.7  VS Resistor Divider, Line Compensation
        8. 10.3.2.8  Output Capacitance
        9. 10.3.2.9  VDD Capacitance, CVDD
        10. 10.3.2.10 Feedback Network Biasing
      3. 10.3.3 Application Curves
  12. 11Power Supply Recommendations
  13. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 VDD Pin
      2. 12.1.2 VS Pin
      3. 12.1.3 FB Pin
      4. 12.1.4 GND Pin
      5. 12.1.5 CS Pin
      6. 12.1.6 DRV Pin
      7. 12.1.7 HV Pin
    2. 12.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
        1. 13.1.1.1 Custom Design With WEBENCH® Tools
      2. 13.1.2 Device Nomenclature
        1. 13.1.2.1  Capacitance Terms in Farads
        2. 13.1.2.2  Duty Cycle Terms
        3. 13.1.2.3  Frequency Terms in Hertz
        4. 13.1.2.4  Current Terms in Amperes
        5. 13.1.2.5  Current and Voltage Scaling Terms
        6. 13.1.2.6  Transformer Terms
        7. 13.1.2.7  Power Terms in Watts
        8. 13.1.2.8  Resistance Terms in Ohms
        9. 13.1.2.9  Timing Terms in Seconds
        10. 13.1.2.10 Voltage Terms in Volts
        11. 13.1.2.11 AC Voltage Terms in VRMS
        12. 13.1.2.12 Efficiency Terms
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
  15.   Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Pin Functions

PINI/ODESCRIPTION
NAMENO.
CS5IThe current-sense (CS) input connects to a ground-referenced current-sense resistor in series with the power switch. The resulting voltage monitors and controls the peak primary current. A series resistor is added to this pin to compensate for peak switch-current levels as the AC-mains input varies.
DRV6ODrive (DRV) is an output that drives the gate of an external high-voltage MOSFET switching transistor.
FB3IThe feedback (FB) input receives a current signal from the optocoupler output transistor. An internal current mirror divides the feedback current by 2.5 and applies it to an internal pullup resistor to generate a control voltage, VCL. The voltage at this resistor directly drives the control law function, which determines the switching frequency and the peak amplitude of the switching current .
GND4The ground (GND) pin is both the reference pin for the controller, and the low-side return for the drive output. Special care must be taken to return all AC-decoupling capacitors as close as possible to this pin and avoid any common trace length with analog signal-return paths.
HV8IThe high-voltage (HV) pin may connect directly, or through a series resistor, to the rectified bulk voltage and provides a charge to the VDD capacitor for the startup of the power supply.
VDD1IVDD is the bias-supply input pin to the controller. A carefully placed bypass capacitor to GND is required on this pin.
VS2IVoltage sense (VS) is an input used to provide demagnetization timing feedback to the controller to limit frequency, to control constant-current operation, and to provide output-overvoltage detection. VS is also used for AC-mains input-voltage detection for peak primary-current compensation. This pin connects to a voltage divider between an auxiliary winding and GND. The value of the upper resistor of this divider programs the AC-mains run and stop thresholds, and factors into line compensation at the CS pin.