ZHCSPB6D July   2022  – April 2024 TPS1211-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump and Gate Driver Output (VS, PU, PD, BST, SRC)
      2. 8.3.2 Capacitive Load Driving
        1. 8.3.2.1 FET Gate Slew Rate Control
        2. 8.3.2.2 Using Precharge FET - (with TPS12111-Q1 Only)
      3. 8.3.3 Overcurrent and Short-Circuit Protection
        1. 8.3.3.1 Overcurrent Protection with Auto-Retry
        2. 8.3.3.2 Overcurrent Protection with Latch-Off
        3. 8.3.3.3 Short-Circuit Protection
      4. 8.3.4 Analog Current Monitor Output (IMON)
      5. 8.3.5 Overvoltage (OV) and Undervoltage Protection (UVLO)
      6. 8.3.6 Remote Temperature Sensing and Protection (DIODE)
      7. 8.3.7 Output Reverse Polarity Protection
      8. 8.3.8 TPS1211x-Q1 as a Simple Gate Driver
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Driving Zonal Controller Loads on 12-V Line in Power Distribution Unit
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application: Reverse Polarity Protection with TPS12110-Q1
      1. 9.3.1 Design Requirements
      2. 9.3.2 External Component Selection
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 接收文档更新通知
    2. 10.2 支持资源
    3. 10.3 Trademarks
    4. 10.4 静电放电警告
    5. 10.5 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Remote Temperature Sensing and Protection (DIODE)

The device features an integrated remote temperature sensing, protection and dedicated fault output. In TPS1211x-Q1, remote temperature measurement is done by using transistor in diode configuration. Connect the DIODE pin of TPS1211x-Q1 to the collector and base of a MMBT3904 BJT. The temperature is calculated internally based on difference of measured diode voltages at two test currents.

In TPS12110-Q1 and TPS12112-Q1, after the sensed temperature reaches approximately 150ºC, the device pulls PD low to SRC, turning off the external FET and also asserts FLT_T low. After the temperature reduces to 130ºC, an internally fixed auto-retry cycle of 512 ms commences. FLT_T de-asserts and the external FET turns ON after the retry duration of 512 ms is lapsed.

In TPS12111-Q1, after the sensed temperature crosses 150°C, PD and G get pulled low to SRC. After the TSD hysteresis, PU and G stays latched OFF. The latch gets reset by toggling EN/UVLO below V(ENF) or by power cycling VS below V(VS_PORF).

Figure 8-15 shows simplified block diagram of TPS1211x-Q1 DIODE based remote temperature sensing.

TPS1211-Q1 DIODE based Remote Temperature Sensing Block DiagramFigure 8-15 DIODE based Remote Temperature Sensing Block Diagram