ZHCSMV1 December   2020 TAS5822M

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
      1. 6.7.1 Bridge Tied Load (BTL) Configuration Curves with 1SPW Modulation, Fsw = 768kHz
      2. 6.7.2 Parallel Bridge Tied Load (PBTL) Configuration Curves with 1SPW Modulation, Fsw = 768kHz
    8. 6.8 Parametric Measurement Information
      1. 6.8.1 Power Consumption Summary
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Supplies
      2. 7.3.2 Device Clocking
      3. 7.3.3 Serial Audio Port – Clock Rates
      4. 7.3.4 Clock Halt Auto-recovery
      5. 7.3.5 Sample Rate on the Fly Change
      6. 7.3.6 Serial Audio Port - Data Formats and Bit Depths
      7. 7.3.7 Digital Audio Processing
      8. 7.3.8 Class D Audio Amplifier
        1. 7.3.8.1 Speaker Amplifier Gain Select
    4. 7.4 Device Functional Modes
      1. 7.4.1 Software Control
      2. 7.4.2 Speaker Amplifier Operating Modes
        1. 7.4.2.1 BTL Mode
        2. 7.4.2.2 PBTL Mode
      3. 7.4.3 Minimize EMI with Spread Spectrum
      4. 7.4.4 Minimize EMI with channel to channel phase shift
      5. 7.4.5 Minimize EMI with Multi-Devices PWM Phase Synchronization
      6. 7.4.6 Thermal Foldback
      7. 7.4.7 Device State Control
      8. 7.4.8 Device Modulation
        1. 7.4.8.1 BD Modulation
        2. 7.4.8.2 1SPW Modulation
        3. 7.4.8.3 Hybrid Modulation
    5. 7.5 Programming and Control
      1. 7.5.1 I2 C Serial Communication Bus
      2. 7.5.2 Slave Address
        1. 7.5.2.1 Random Write
        2. 7.5.2.2 Sequential Write
        3. 7.5.2.3 Random Read
        4. 7.5.2.4 Sequential Read
        5. 7.5.2.5 DSP Memory Book, Page and BQ update
        6. 7.5.2.6 Example Use
        7. 7.5.2.7 Checksum
          1. 7.5.2.7.1 Cyclic Redundancy Check (CRC) Checksum
          2. 7.5.2.7.2 Exclusive or (XOR) Checksum
      3. 7.5.3 Control via Software
        1. 7.5.3.1 Startup Procedures
        2. 7.5.3.2 Shutdown Procedures
        3. 7.5.3.3 Protection and Monitoring
          1. 7.5.3.3.1 Over current Shutdown (OCSD)
          2. 7.5.3.3.2 Speaker DC Protection
          3. 7.5.3.3.3 Device Over Temperature Protection
          4. 7.5.3.3.4 Over Voltage Protection
          5. 7.5.3.3.5 Under Voltage Protection
          6. 7.5.3.3.6 Clock Fault
    6. 7.6 Register Maps
      1. 7.6.1 CONTROL PORT Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 2.0 (Stereo BTL) System
      2. 8.2.2 MONO (PBTL) System
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Bootstrap Capacitors
          2. 8.2.2.2.2 Inductor Selections
          3. 8.2.2.2.3 Power Supply Decoupling
          4. 8.2.2.2.4 Output EMI Filtering
        3. 8.2.2.3 Application Performance Plots
  9. Power Supply Recommendations
    1. 9.1 DVDD Supply
    2. 9.2 PVDD Supply
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 General Guidelines for Audio Amplifiers
      2. 10.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 10.1.3 Optimizing Thermal Performance
        1. 10.1.3.1 Device, Copper, and Component Layout
        2. 10.1.3.2 Stencil Pattern
          1. 10.1.3.2.1 PCB footprint and Via Arrangement
          2. 10.1.3.2.2 Solder Stencil
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 支持资源
    2. 11.2 Trademarks
    3. 11.3 静电放电警告
    4. 11.4 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Over current Shutdown (OCSD)

Under severe short-circuit event, such as a short to PVDD or ground, the device uses a peak-current detector, and the affected channel shuts down in < 100 ns if the peak current are enough. The shutdown speed depends on a number of factors, such as the impedance of the short circuit, supply voltage, and switching frequency. The user may restart the affected channel via I2C. An OCSD event activates the fault pin, and the I2C fault register saves a record. If the supply or ground short is strong enough to exceed the peak current threshold but not severe enough to trigger the OSCD, the peak current limiter prevents excess current from damaging the output FETs, and operation returns to normal after the short is removed.