ZHCSDM5G March   2012  – December 2014 LMK00105

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史
  5. Pin Configuration and Diagrams
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Vdd and Vddo Power Supplies
      2. 7.3.2 Clock Input
        1. 7.3.2.1 Selection of Clock Input
          1. 7.3.2.1.1 CLKin/CLKin* Pins
          2. 7.3.2.1.2 OSCin/OSCout Pins
      3. 7.3.3 Clock Outputs
        1. 7.3.3.1 Output Enable Pin
        2. 7.3.3.2 Using Less than Five Outputs
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Clock Inputs
      2. 8.1.2 Clock Outputs
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application Block Diagram
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Crystal Interface
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Supply Filtering
    2. 9.2 Power Supply Ripple Rejection
    3. 9.3 Power Supply Bypassing
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Ground Planes
      2. 10.1.2 Power Supply Pins
      3. 10.1.3 Differential Input Termination
      4. 10.1.4 Output Termination
    2. 10.2 Layout Example
    3. 10.3 Thermal Management
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 差分电压测量术语
    2. 11.2 商标
    3. 11.3 静电放电警告
    4. 11.4 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Vdd Core Supply Voltage –0.3 3.6 V
Vddo Output Supply Voltage –0.3 3.6 V
VIN Input Voltage –0.3 Vdd + 0.3 V
TL Lead Temperature (solder 4 s) 260 °C
TJ Junction Temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN TYP MAX UNIT
TA Ambient Temperature –40 25 85 °C
Vdd Core Supply Voltage 2.375 3.3 3.45 V
Vddo Output Supply Voltage (1) 1.425 3.3 Vdd V
(1) Vddo should be less than or equal to Vdd (Vddo ≤ Vdd)

6.4 Thermal Information

THERMAL METRIC(1) LMK00105 UNIT
RTW
24 PINS
RθJA Junction-to-ambient thermal resistance 46.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 50.3
RθJB Junction-to-board thermal resistance 25.5
ψJT Junction-to-top characterization parameter 1.9
ψJB Junction-to-board characterization parameter 25.6
RθJC(bot) Junction-to-case (bottom) thermal resistance 13.6
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

(2.375 V ≤ Vdd ≤ 3.45 V, 1.425 ≤ Vddo ≤ Vdd, -40 °C ≤ TA ≤ 85 °C, Differential inputs. Typical values represent most likely parametric norms at Vdd = Vddo = 3.3 V, TA = 25 °C, at the Recommended Operation Conditions at the time of product characterization and are not ensured). Test conditions are: Ftest = 100 MHz, Load = 5 pF in parallel with 50 Ω unless otherwise stated.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TOTAL DEVICE CHARACTERISTICS
Vdd Core Supply Voltage 2.375 2.5 or 3.3 3.45 V
Vddo Output Supply Voltage 1.425 1.5, 1.8, 2.5, or 3.3 Vdd V
IVdd Core Current No CLKin 16 25 mA
Vddo = 3.3 V, Ftest = 100 MHz 24
Vddo = 2.5 V, Ftest = 100 MHz 20
IVddo[n] Current for Each Output Vddo = 2.5 V,
OE = High, Ftest = 100 MHz
5 mA
Vddo= 3.3 V,
OE = High, Ftest = 100 MHz
7
OE = Low 0.1
IVdd + IVddo Total Device Current with Loads on all outputs OE = High @ 100 MHz 48 mA
OE = Low 16
POWER SUPPLY RIPPLE REJECTION (PSRR)
PSRR Ripple Induced
Phase Spur Level
100 kHz, 100 mVpp
Ripple Injected on
Vdd, Vddo = 2.5 V
-44 dBc
OUTPUTS (1)
Skew Output Skew (8) Measured between outputs,
referenced to CLKout0
6 25 ps
tPD Propagation Delay CLKin to CLKout (8) CL = 5 pF, RL = 50 Ω
Vdd = 3.3 V; Vddo = 3.3 V
0.85 1.4 2.2 ns
CL = 5 pF, RL = 50 Ω
Vdd = 2.5 V; Vddo = 1.5 V
1.1 1.8 2.8 ns
tPD, PP Part-to-part Skew (8)(2) CL = 5 pF, RL = 50 Ω
Vdd = 3.3 V; Vddo = 3.3 V
0.35 ns
CL = 5 pF, RL = 50 Ω
Vdd = 2.5 V; Vddo = 1.5 V
0.6 ns
fCLKout Output Frequency (3) DC 200 MHz
tRise Rise/Fall Time Vdd = 3.3 V, Vddo = 1.8 V, CL = 10 pF 250 ps
Vdd = 2.5 V, Vddo = 2.5 V, CL = 10 pF 275
Vdd = 3.3 V, Vddo = 3.3 V, CL = 10 pF 315
VCLKoutLow Output Low Voltage 0.1 V
VCLKoutHigh Output High Voltage Vddo-0.1
RCLKout Output Resistance 50 ohm
tj RMS Additive Jitter fCLKout = 156.25 MHz,
CMOS input slew rate ≥ 2 V/ns
CL = 5 pF, BW = 12 kHz to 20 MHz
30 fs
DIGITAL INPUTS (OE, SEL0, SEL1)
VLow Input Low Voltage Vdd = 2.5 V 0.4 V
VHigh Input High Voltage Vdd = 2.5 V 1.3
Vdd = 3.3 V 1.6
IIH High Level Input Current 50 uA
IIL Low Level Input Current -5 5
CLKin/CLKin* INPUT CLOCK SPECIFICATIONS(4)(5)
IIH High Level Input Current VCLKin = Vdd 20 uA
IIL Low Level Input Current VCLKin = 0 V –20 uA
VIH Input High Voltage Vdd V
VIL Input Low Voltage GND
VCM Differential Input Common
Mode Input Voltage (7)
VID = 150 mV 0.5 Vdd-
1.2
V
VID = 350 mV 0.5 Vdd-
1.1
VID = 800 mV 0.5 Vdd-
0.9
VI_SE Single-Ended Input Voltage Swing (8) CLKinX driven single-ended (AC or DC coupled), CLKinX* AC coupled to GND or externally biased within VCM range 0.3 2 Vpp
VID Differential Input Voltage Swing CLKin driven differentially 0.15 1.5 V
OSCin/OSCout PINS
fOSCin Input Frequency (3) Single-Ended Input, OSCout floating DC 200 MHz
fXTAL Crystal Frequency Input Range Fundamental Mode Crystal
ESR < 200 Ω ( fXtal ≤ 30 MHz )
ESR < 120 Ω ( fXtal > 30 MHz ) (3)(6)
10 40 MHz
COSCin Shunt Capacitance 1 pF
VIH Input High Voltage Single-Ended Input, OSCout floating 2.5 V
(1) AC Parameters for CMOS are dependent upon output capacitive loading
(2) Part-to-part skew is calculated as the difference between the fastest and slowest tPD across multiple devices.
(3) Specified by characterization.
(4) See 差分电压测量术语 for definition of VOD and VID.
(5) Refer to application note AN-912 Common Data Transmission Parameters and their Definitions for more information.
(6) The ESR requirements stated are what is necessary in order to ensure that the Oscillator circuitry has no start up issues. However, lower ESR values for the crystal might be necessary in order to stay below the maximum power dissipation requirements for that crystal.
(7) When using differential signals with VCM outside of the acceptable range for the specified VID, the clock must be AC coupled.
(8) Parameter is specified by design, not tested in production.

6.6 Typical Characteristics

Unless otherwise specified: Vdd = Vddo = 3.3 V, TA = 20 °C, CL = 5 pF, CLKin driven differentially, input slew rate ≥ 2 V/ns.
LMK00105 30180741.gifFigure 1. RMS Jitter vs. CLKin Slew Rate @ 100 MHz
LMK00105 30180742.gif
Test conditions: LVCMOS Input, slew rate ≥ 2 V/ns, CL = 5 pF in parallel with 50 Ω, BW = 1 MHz to 20 MHz
Figure 3. LVCMOS Phase Noise @ 100 MHz
LMK00105 30180776.gifFigure 5. Iddo per Output vs Frequency
LMK00105 30180774.gifFigure 2. Noise Floor vs. CLKin Slew Rate @ 100 MHz
LMK00105 30180775.gifFigure 4. LVCMOS Output Swing vs. Frequency