ZHCSBC7E JULY   2013  – December 2019 LMZ31710

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化应用
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics (PVIN = VIN = 12 V)
    7. 6.7 Typical Characteristics (PVIN = VIN = 5 V)
    8. 6.8 Typical Characteristics (PVIN = 3.3 V, VIN = 5 V)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VIN and PVIN Input Voltage
      2. 7.3.2  3.3-V PVIN Operation
      3. 7.3.3  Adjusting the Output Voltage (0.6 V to 5.5 V)
      4. 7.3.4  Capacitor Recommendations For the LMZ31710 Power Supply
        1. 7.3.4.1 Capacitor Technologies
          1. 7.3.4.1.1 Electrolytic, Polymer-Electrolytic Capacitors
          2. 7.3.4.1.2 Ceramic Capacitors
          3. 7.3.4.1.3 Tantalum, Polymer-Tantalum Capacitors
        2. 7.3.4.2 Input Capacitor
        3. 7.3.4.3 Output Capacitor
      5. 7.3.5  Transient Response
        1. 7.3.5.1 Transient Response Waveforms
      6. 7.3.6  Power Good (PWRGD)
      7. 7.3.7  Light Load Efficiency (LLE)
      8. 7.3.8  SYNC_OUT
      9. 7.3.9  Parallel Operation
      10. 7.3.10 Power-Up Characteristics
      11. 7.3.11 Pre-Biased Start-Up
      12. 7.3.12 Remote Sense
      13. 7.3.13 Thermal Shutdown
      14. 7.3.14 Output On/Off Inhibit (INH)
      15. 7.3.15 Slow Start (SS/TR)
      16. 7.3.16 Overcurrent Protection
      17. 7.3.17 Synchronization (CLK)
      18. 7.3.18 Sequencing (SS/TR)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Programmable Undervoltage Lockout (UVLO)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Setting The Output Voltage
        3. 8.2.2.3 Setting the Switching Frequency
        4. 8.2.2.4 Input Capacitance
        5. 8.2.2.5 Output Capacitance
    3. 8.3 Additional Application Schematics
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Considerations
    2. 10.2 Layout Examples
      1. 10.2.1 EMI
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 使用 WEBENCH® 工具创建定制设计
      2. 11.1.2 第三方产品免责声明
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 Glossary
  12. 12机械、封装和可订购信息
    1. 12.1 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Synchronization (CLK)

An internal phase locked loop (PLL) has been implemented to allow synchronization between 200 kHz and 1200 kHz, and to easily switch from RT mode to CLK mode. To implement the synchronization feature, connect a square wave clock signal to the RT/CLK pin with a duty cycle between 20% to 80%. The clock signal amplitude must transition lower than 0.5 V and higher than 2 V. The start of the switching cycle is synchronized to the falling edge of RT/CLK pin. In applications where both RT mode and CLK mode are needed, the device can be configured as shown in Figure 34.

Before the external clock is present, the device works in RT mode and the switching frequency is set by RT resistor. When the external clock is present, the CLK mode overrides the RT mode. The first time the CLK pin is pulled above the RT/CLK high threshold (2 V), the device switches from RT mode to CLK mode and the RT/CLK pin becomes high impedance as the PLL starts to lock onto the frequency of the external clock. It is not recommended to switch from CLK mode back to RT mode because the internal switching frequency drops to 100 kHz first before returning to the switching frequency set by the RT resistor (RRT).

LMZ31710 slvsBC6_RTSync.gifFigure 34. RT/CLK Configuration

The switching frequency must be selected based on the output voltages of the devices being synchronized. Table 7 shows the allowable frequencies for a given range of output voltages. The allowable switching frequency changes based on the maximum output current (IOUT) of an application. The table shows the VOUT range when IOUT ≤ 10 A, 9 A, and 8 A. For the most efficient solution, always synchronize to the lowest allowable frequency. For example, an application requires synchronizing three LMZ31710 devices with output voltages of 1.0 V, 1.2 V and 1.8 V, all powered from PVIN = 12 V. Table 7 shows that all three output voltages must be synchronized to 300 kHz.

Table 7. Allowable Switching Frequency versus Output Voltage

SWITCHING FREQUENCY (kHz) PVIN = 12 V PVIN = 5 V
VOUT RANGE (V) VOUT RANGE (V)
IOUT ≤ 10 A IOUT ≤ 9 A IOUT ≤ 8 A IOUT ≤ 10 A IOUT ≤ 9 A IOUT ≤ 8 A
200 0.6 - 1.2 0.6 - 1.6 0.6 - 2.0 0.6 - 1.5 0.6 - 2.5 0.6 - 4.3
300 0.8 - 1.9 0.8 - 2.6 0.8 - 3.5 0.6 - 4.3 0.6 - 4.3 0.6 - 4.3
400 1.0 - 2.7 1.0 - 4.0 1.0 - 5.5 0.6 - 4.3 0.6 - 4.3 0.6 - 4.3
500 1.3 - 3.8 1.3 - 5.5 1.3 - 5.5 0.6 - 4.3 0.6 - 4.3 0.6 - 4.3
600 1.5 - 5.5 1.5 - 5.5 1.5 - 5.5 0.7 - 4.3 0.7 - 4.3 0.7 - 4.3
700 1.8 - 5.5 1.8 - 5.5 1.8 - 5.5 0.8 - 4.3 0.8 - 4.3 0.8 - 4.3
800 2.0 - 5.5 2.0 - 5.5 2.0 - 5.5 0.9 - 4.3 0.9 - 4.3 0.9 - 4.3
900 2.2 - 5.5 2.2 - 5.5 2.2 - 5.5 1.0 - 4.3 1.0 - 4.3 1.0 - 4.3
1000 2.5 - 5.5 2.5 - 5.5 2.5 - 5.5 1.1 - 4.3 1.1 - 4.3 1.1 - 4.3
1100 2.7 - 5.5 2.7 - 5.5 2.7 - 5.5 1.3 - 4.3 1.2 - 4.3 1.2 - 4.3
1200 3.0 - 5.5 3.0 - 5.5 3.0 - 5.5 1.4 - 4.3 1.3 - 4.3 1.3 - 4.3