ZHCSR80A June   2009  – January 2023 AMC6821-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Functional Block Diagram
    2. 8.2 Feature Description
      1. 8.2.1 ADC Converter
      2. 8.2.2 Temperature Sensor
        1. 8.2.2.1 Series Resistance Cancellation
        2. 8.2.2.2 Reading Temperature Data
        3. 8.2.2.3 Temperature Out-of-Range Detection
        4. 8.2.2.4 Remote Temperature Sensor Failure Detection
      3. 8.2.3 PWM Output
      4. 8.2.4 PWM Waveform Setting
      5. 8.2.5 Fan Speed Measurement
        1. 8.2.5.1 Tach-Data Register
          1. 8.2.5.1.1 Reading the Tach Data Register
          2. 8.2.5.1.2 RPM Measurement Rate
          3. 8.2.5.1.3 Select Number of Pulses/Revolution
          4. 8.2.5.1.4 Tach Mode Selection
          5. 8.2.5.1.5 Fan RPM Out-of-Range Detection
      6. 8.2.6 Fan Failure Detection
      7. 8.2.7 FAN-FAULT Pin
      8. 8.2.8 Fan Control
        1. 8.2.8.1 THERM Pin and External Hardware Control
          1. 8.2.8.1.1 THERM Pin as an Output
          2. 8.2.8.1.2 THERM Pin as an Input
        2. 8.2.8.2 Fan Spin-Up
        3. 8.2.8.3 Normal Fan Speed Control
          1. 8.2.8.3.1 Software DCY Control Mode
          2. 8.2.8.3.2 Software-RPM Control Mode (Fan Speed Regulator)
          3. 8.2.8.3.3 Auto Temperature Fan Mode
      9. 8.2.9 Interrupt
        1. 8.2.9.1 OVR Pin
        2. 8.2.9.2 SMBALERT Pin
        3. 8.2.9.3 SMBALERT Interrupt Behavior
        4. 8.2.9.4 Handling SMBALERT Interrupts
    3. 8.3 Device Functional Modes
    4. 8.4 Programming
      1. 8.4.1 SMBus Interface
        1. 8.4.1.1 Communication Protocols
      2. 8.4.2 SMBus Alert Response Address (ARA)
      3. 8.4.3 Power-On Reset and Start Operation
    5. 8.5 Register Map
      1. 8.5.1 Register Description
        1. 8.5.1.1 Device Configuration Registers
        2. 8.5.1.2 Device Status Registers
        3. 8.5.1.3 Fan Controller Registers
        4. 8.5.1.4 Temperature Data Registers
        5. 8.5.1.5 Temperature Limit Registers
          1. 8.5.1.5.1 Tach-Data Register
          2. 8.5.1.5.2 Tach Setting Register
          3. 8.5.1.5.3 Tach Low Limit Register
          4. 8.5.1.5.4 Tach High Limit Register
  9. Application and Implementation
    1. 9.1 Power Supply Recommendations
  10. 10Device and Documentation Support
    1. 10.1 接收文档更新通知
    2. 10.2 支持资源
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Temperature Sensor

The AMC6821-Q1 has an integrated temperature sensor (shown in Figure 8-2) to measure the ambient temperature, and one remote diode sensor (such as a Pentium thermal diode) input to measure external (CPU) temperature. The measurement relies on the characteristics of a semiconductor junction operation at a fixed current level. The forward voltage of the diode (VBE) depends on the current through it and the ambient temperature. The change in VBE when the diode is operated at two different currents, I1 and I2, is shown in Equation 1:

Equation 1. GUID-EF3CE74F-C407-44FF-B7D9-D91347874FF2-low.gif

where

  • k is Boltzmann’s constant,
  • q is the charge of the carrier,
  • T is the absolute temperature in degrees Kelvin, and
  • N is the ratio of the two currents.
GUID-4F892AB8-55A5-4932-927A-44CCFA2AFDFC-low.gifFigure 8-2 Integrated Local Temperature Sensor

The remote sensing transistor can be a substrate transistor built within the microprocessor (as in a Pentium-IV), or a discrete small-signal type transistor. This architecture is shown in Figure 8-3. The internal bias diode biases the IN– terminal above ground to prevent the ground noise from interfering with the measurement. An external capacitor (up to 1000pF) may be placed between IN+ and IN– to further reduce the noise from interfering.

GUID-B1887A70-446D-491B-A30A-FE6B6589FB93-low.gifFigure 8-3 Remote Temperature Sensor

The analog sensing signal is pre-processed by a low-pass filter and signal conditioning circuitry, then digitized by the ADC. The resulting digital signal is further processed by the digital filter and processing unit. The final result is stored in the local temperature data register and remote temperature data register, respectively. The eight MSBs are stored in the corresponding Temp-DATA-HByte register, and the three LSBs are stored in the Temp-DATA-LByte register. Refer to the Temperature Data Registers section for details.

The format of the final result is in two’s complement; see Table 8-1. It should be noted that the device measures the temperature from –40°C to +125°C, although the code represents temperature from –128°C to +127°C.