产品详细信息

Function USB2 USB speed (Mbps) 12 Supply voltage (V) 3.3 Rating Catalog Operating temperature range (C) -40 to 85, 0 to 70
Function USB2 USB speed (Mbps) 12 Supply voltage (V) 3.3 Rating Catalog Operating temperature range (C) -40 to 85, 0 to 70
LQFP (VF) 32 49 mm² 7 x 7 VQFN (RHB) 32 25 mm² 5.0 x 5.0
  • Fully Compliant With the USB Specification as a Full-Speed Hub: TID #30220231
  • 32-Pin LQFP (1) Package With a 0.8-mm Terminal Pitch or QFN Package With a 0.5-mm Pin Pitch
  • 3.3-V Low-Power ASIC Logic
  • Integrated USB Transceivers
  • State Machine Implementation Requires No Firmware Programming
  • One Upstream Port and Four Downstream Ports
  • All Downstream Ports Support Full-Speed and Low-Speed Operations
  • Two Power Source Modes
    • Self-Powered Mode
    • Bus-Powered Mode
  • Power Switching and Overcurrent Reporting Is Provided Ganged or Per Port
  • Supports Suspend and Resume Operations
  • Supports Programmable Vendor ID and Product ID With External Serial EEPROM
  • 3-State EEPROM Interface Allows EEPROM Sharing
  • Push-Pull Outputs for PWRON Eliminate the Need for External Pullup Resistors
  • Noise Filtering on OVRCUR Provides Immunity to Voltage Spikes
  • Package Pinout Allows 2-Layer PCB
  • Low EMI Emission Achieved by a 6-MHz Crystal Input
  • Migrated From Proven TUSB2040 Hub
  • Lower Cost Than the TUSB2040 Hub
  • Enhanced System ESD Performance
  • No Special Driver Requirements; Works Seamlessly With Any Operating System With USB Stack Support
  • Supports 6-MHz Operation Through a Crystal Input or a 48-MHz Input Clock

(1)JEDEC descriptor S-PQFP-G for low-profile quad flatpack (LQFP).

  • Fully Compliant With the USB Specification as a Full-Speed Hub: TID #30220231
  • 32-Pin LQFP (1) Package With a 0.8-mm Terminal Pitch or QFN Package With a 0.5-mm Pin Pitch
  • 3.3-V Low-Power ASIC Logic
  • Integrated USB Transceivers
  • State Machine Implementation Requires No Firmware Programming
  • One Upstream Port and Four Downstream Ports
  • All Downstream Ports Support Full-Speed and Low-Speed Operations
  • Two Power Source Modes
    • Self-Powered Mode
    • Bus-Powered Mode
  • Power Switching and Overcurrent Reporting Is Provided Ganged or Per Port
  • Supports Suspend and Resume Operations
  • Supports Programmable Vendor ID and Product ID With External Serial EEPROM
  • 3-State EEPROM Interface Allows EEPROM Sharing
  • Push-Pull Outputs for PWRON Eliminate the Need for External Pullup Resistors
  • Noise Filtering on OVRCUR Provides Immunity to Voltage Spikes
  • Package Pinout Allows 2-Layer PCB
  • Low EMI Emission Achieved by a 6-MHz Crystal Input
  • Migrated From Proven TUSB2040 Hub
  • Lower Cost Than the TUSB2040 Hub
  • Enhanced System ESD Performance
  • No Special Driver Requirements; Works Seamlessly With Any Operating System With USB Stack Support
  • Supports 6-MHz Operation Through a Crystal Input or a 48-MHz Input Clock

(1)JEDEC descriptor S-PQFP-G for low-profile quad flatpack (LQFP).

The TUSB2046x is a 3.3-V CMOS hub device that provides one upstream port and four downstream ports in compliance with the Universal Serial Bus (USB) specification as a full-speed hub. Because this device is implemented with a digital state machine instead of a microcontroller, no firmware
programming is required. Fully compliant USB transceivers are integrated into the ASIC for all upstream and downstream ports. The downstream ports support full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. The configuration of the BUSPWR pin selects either the bus-powered or the self-powered mode.

Configuring the GANGED input determines the power switching and overcurrent detection modes for the downstream ports. If GANGED is high, all PWRON outputs switch together and if any OVRCUR is activated, all ports transition to the power-off state. If GANGED is low, the PWRON outputs and OVRCUR inputs operate on a per-port basis.

The TUSB2046x provides the flexibility of using a 6-MHz or a 48-MHz clock. The logic level of the TSTMODE terminal controls the selection of the clock source. When TSTMODE is low, the output of the internal APLL circuitry is selected to drive the internal core of the device. When TSTMODE is high, the TSTPLL/48MCLK input is selected as the input clock source and the APLL circuitry is powered down and bypassed. The internal oscillator cell is also powered down while TSTMODE is high. Low EMI emission is achieved because the TUSB2046x can usee a 6-MHz crystal input. Connect the crystal as shown in Figure 6. An internal PLL then generates the 48-MHz clock used to sample data from the upstream port and to synchronize the 12 MHz used for the USB clock. If low-power suspend and resume are desired, a passive crystal or resonator must be used. However, a 6-MHz oscillator may be used by connecting the output to the XTAL1 pin and leaving the XTAL2 pin open. The oscillator TTL output must not exceed 3.6 V.

For 48-MHz operation, the clock cannot be generated with a crystal using the XTAL2 output because the internal oscillator cell supports only the fundamental frequency. Other useful features of the TUSB2046x include a package with a 0.8-mm pin pitch for easy PCB routing and assembly, push-pull outputs for the PWRON pins eliminate the need for pullup resistors required by traditional open-collector I/Os, and OVRCUR pins have noise filtering for increased immunity to voltage spikes.

The TUSB2046x is a 3.3-V CMOS hub device that provides one upstream port and four downstream ports in compliance with the Universal Serial Bus (USB) specification as a full-speed hub. Because this device is implemented with a digital state machine instead of a microcontroller, no firmware
programming is required. Fully compliant USB transceivers are integrated into the ASIC for all upstream and downstream ports. The downstream ports support full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. The configuration of the BUSPWR pin selects either the bus-powered or the self-powered mode.

Configuring the GANGED input determines the power switching and overcurrent detection modes for the downstream ports. If GANGED is high, all PWRON outputs switch together and if any OVRCUR is activated, all ports transition to the power-off state. If GANGED is low, the PWRON outputs and OVRCUR inputs operate on a per-port basis.

The TUSB2046x provides the flexibility of using a 6-MHz or a 48-MHz clock. The logic level of the TSTMODE terminal controls the selection of the clock source. When TSTMODE is low, the output of the internal APLL circuitry is selected to drive the internal core of the device. When TSTMODE is high, the TSTPLL/48MCLK input is selected as the input clock source and the APLL circuitry is powered down and bypassed. The internal oscillator cell is also powered down while TSTMODE is high. Low EMI emission is achieved because the TUSB2046x can usee a 6-MHz crystal input. Connect the crystal as shown in Figure 6. An internal PLL then generates the 48-MHz clock used to sample data from the upstream port and to synchronize the 12 MHz used for the USB clock. If low-power suspend and resume are desired, a passive crystal or resonator must be used. However, a 6-MHz oscillator may be used by connecting the output to the XTAL1 pin and leaving the XTAL2 pin open. The oscillator TTL output must not exceed 3.6 V.

For 48-MHz operation, the clock cannot be generated with a crystal using the XTAL2 output because the internal oscillator cell supports only the fundamental frequency. Other useful features of the TUSB2046x include a package with a 0.8-mm pin pitch for easy PCB routing and assembly, push-pull outputs for the PWRON pins eliminate the need for pullup resistors required by traditional open-collector I/Os, and OVRCUR pins have noise filtering for increased immunity to voltage spikes.

下载

技术文档

star = 有关此产品的 TI 精选热门文档
未找到结果。请清除搜索,并重试。
查看全部 4
类型 项目标题 下载最新的英语版本 日期
* 数据表 TUSB2046x 4-Port Hub for the Universal Serial Bus With Optional Serial EEPROM Interface 数据表 (Rev. L) 28 Jun 2017
* 勘误表 TUSB2046B Errata 03 Oct 2006
应用手册 TUSB2046B Schematic Checklist 13 Aug 2018
应用手册 USB 1.1 / USB 2.0 Hub FAQ 04 Mar 2011

设计和开发

如需其他信息或资源,请查看下方列表,点击标题即可进入详情页面。

评估板

DP83TC811EVM — DP83TC811 100BASE-T1 转 100BASE-TX 汽车以太网 PHY 介质转换器评估模块

DP83TC811EVM 符合 IEEE 802.3bw,支持 100BASE-T1。DP83TC811R 和 DP83822H 背对背地配置在 RGMII 中,允许从 100BASE-T1 到 100BASE-TX 的无缝媒体转换。此参考设计已通过 UNH 的 100BASE-T1 合规性测试和验证。

DP83TC811EVM 包括 MSP430F5529 且预先加载了 USB-2-MDIO 用于 DP83TC811R 和 DP83822H 寄存器访问。外部电源可连接到各个指定电压轨以进行进一步系统评估。

TI.com 無法提供
评估板

EVM430-FR6043 — MSP430FR6043 超声波感应评估模块

The EVM430-FR6043 evaluation kit is a development platform that can be used to evaluate the performance of the MSP430FR6043 for ultrasonic sensing applications (e.g. Smart Gas Meters). The MSP430FR6043 MCU is an ultra-low-power MCU that integrates an ultrasonic sensing analog front end (USS) for (...)
TI.com 無法提供
评估板

EVM430-FR6047 — MSP430FR6047 超声波感应评估模块

EVM430-FR6047 评估套件是一款开发平台,可用于评估适用于超声波检测应用(如智能水表)的 MSP430FR6047 MCU 的性能。MSP430FR6047 MCU 是一款超低功耗器件,具有集成的超声波检测模拟前端 (USS),可实现高精度超声波测量。该器件还包括用于优化信号处理的低耗能加速器 (LEA),可帮助优化功耗,延长电池寿命。该 EVM 提供了一种灵活的解决方案,从而让工程师能够使用 MSP430FR6047 MCU 和各种传感器(范围从 50KHz 到 2.5MHz)快速进行评估和开发。该 EVM 能够利用板载 LCD 显示屏和适用于射频通信模块的连接器显示测量参数。

TI.com 無法提供
评估板

EVM430-FR6989 — 支持水表扩展扫描接口 (ESI) 的超低功耗 MSP430FR6989 评估模块

现在借助 EVM430-FR6989 参考板,可以使用超低功耗 MSP430FRx FRAM 微控制器系列开发水表、燃气表和热量计等流量计设计。EVM430-FR6989(水表参考设计)套件是一款易于使用的评估模块,适用于 MSP430FR698x 系列微控制器。它包含在基于 MSP430FR698x 平台的 MSP430 MCU 上着手开发流量计所需的全部资源,包括用于编程和调试的板载仿真。

此参考设计由三个板组成。EVM 的主板构建于带 LCD 显示屏的 MCU MSP430FR6989 之上。该板的背面有一个电池插座,提供 3.0V 电压。下一个是传感器板。此传感器板专为 LC (...)

TI.com 無法提供
评估板

TPS2071EVM-159 — TPS207x 评估模块

  • Bus-powered input voltage range (BP), 0 to 100 mA/port, 4.75 V min to 5.25 V max
  • Self-power input voltage range (SP), 0 to 500 mA/port, 4.85 V min to 5.15 V max
  • Downstream output voltage range in bus-powered mode, 0 to 100 mA/port, 4.4 V min to 5.25 V max
  • Downstream output voltage range in (...)
TI.com 無法提供
开发套件

MSP-EXP430F5529LP — MSP430F5529 USB LaunchPad 开发套件

Download Design Files

Develop low power, PC-connected applications with integrated Full-speed USB 2.0 (HID/MSC/CDC).  The MSP-EXP430F5529LP LaunchPad is an inexpensive, simple microcontroller development kit for the MSP430F5529 USB microcontroller. It’s an easy way to start developing on (...)

硬件编程工具

CAPTIVATE-PGMR — MSP430 CapTIvate MCU 编程器

MSP430 CapTIvate MCU 编程器可以单独使用,也可以作为 MSP CapTIvate™ MCU 开发套件的一部分,后者是一种采用电容式触控技术评估 MSP430FR2633 微控制器的简单易用的综合性平台。借助金属附加电路板,编程器/调试器板可与 BOOSTXL-CAPKEYPAD BoosterPack™ 模块和 CAPTIVATE-METAL 电容式触控技术共同使用。编程器采用 EnergyTrace™ 技术,可借助 Code Composer Studio IDE 测量能耗。采用 CapTIvate 技术的 MSP MCU (...)
TI.com 無法提供
模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
模拟工具

TINA-TI — 基于 SPICE 的模拟仿真程序

TINA-TI 提供了 SPICE 所有的传统直流、瞬态和频域分析以及更多。TINA 具有广泛的后处理功能,允许您按照希望的方式设置结果的格式。虚拟仪器允许您选择输入波形、探针电路节点电压和波形。TINA 的原理图捕获非常直观 - 真正的“快速入门”。

TINA-TI 安装需要大约 500MB。直接安装,如果想卸载也很容易。我们相信您肯定会爱不释手。

TINA 是德州仪器 (TI) 专有的 DesignSoft 产品。该免费版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需获取可用 TINA-TI 模型的完整列表,请参阅:SpiceRack - 完整列表 

需要 HSpice (...)

原理图

TUSB2046B Reference Schematic

SLLR048.ZIP (92 KB)
参考设计

TIDM-3LC-METER-CONV — 采用三个 LC 传感器的水表参考设计,使用扩展扫描接口 (ESI)

采用电池供电的水表面临着一个挑战:在消耗尽可能少的电量的同时,持续测量水流量信息。本设计使用的 EVM430-FR6989 采用一个基于 MSP430 FRAM 的微控制器,该控制器可提供 100uA/MHz 有源模式电流和 450nA 待机模式电流,同时支持实时时钟功能,并集成了低功耗模拟和数字外设。此外,该 MCU 可提供几乎无限的写入寿命、快速/低功耗写入和数据灵活性。此参考设计演示了如何使用微控制器上的集成扩展扫描接口 (ESI) 来实现超低功耗(相对于采用外部电路的相同检测方法)。在水表设计中,耦合在 3 个 LC 旋转检测传感器上的 ESI (...)
参考设计

TIDM-LC-WATERMTR — 采用两个 LC 传感器的水表参考设计,使用扩展扫描接口 (ESI)

采用电池供电的水表面临着一个挑战:在消耗尽可能少的电量的同时,持续测量水流量信息。本设计使用的 EVM430-FR6989 采用一个基于 MSP430 FRAM 的微控制器,该控制器可提供 100uA/MHz 有源模式电流和 450nA 待机模式电流,同时支持实时时钟功能,并集成了低功耗模拟和数字外设。此外,该 MCU 可提供几乎无限的写入寿命、快速/低功耗写入和数据灵活性。此参考设计演示了如何使用微控制器上的集成扩展扫描接口 (ESI) 来实现超低功耗(相对于采用外部电路的相同检测方法)。在水表设计中,如果耦合在 LC 旋转检测传感器(已提供)上,那么 ESI (...)
参考设计

TIDM-FLOWESI-ETRACE — 采用 FlowESI GUI 和 EnergyTrace 实现代码生成与优化

此参考设计重点展示了使用 FlowESI GUI 和 EnergyTrace 技术来帮助您在 EVM430-FR6989 上设计和优化超低功耗应用。

在设计电池供电应用时,超低功耗是延长系统寿命的关键因素。长时间运行的设计不能浪费它们提供的能量。尽管选择了合适的低功耗硬件组件,固件在降低功耗方面也发挥着
重要作用。

参考设计

TIDM-OPTICALWATERMTR — 采用光学传感器的水表参考设计,使用扩展扫描接口 (ESI)

采用电池供电的水表面临着一个挑战:在消耗尽可能少的电量的同时,持续测量水流量信息。本设计使用的 EVM430-FR6989 采用一个基于 MSP430 FRAM 的微控制器,该控制器可提供 100uA/MHz 有源模式电流和 450nA 待机模式电流,同时支持实时时钟功能,并集成了低功耗模拟和数字外设。此外,该 MCU 可提供几乎无限的写入寿命、快速/低功耗写入和数据灵活性。此参考设计演示了如何使用微控制器上的集成扩展扫描接口 (ESI) 来实现超低功耗(相对于采用外部电路的相同检测方法)。在水表设计中,如果耦合在光学旋转检测传感器(已提供)上,那么 ESI (...)
参考设计

TIDM-GMR-WATERMTR — 采用 GMR 传感器的水表参考设计,使用扩展扫描接口 (ESI)

采用电池供电的水表面临着一个挑战:在消耗尽可能少的电量的同时,持续测量水流量信息。本设计采用基于超低功耗 MSP430 FRAM 的微控制器。该器件可提供 100uA/MHz 有源模式电流和 450nA 待机模式电流,同时支持实时时钟功能,并集成了低功耗模拟和数字外设。此外,基于 FRAM 的 MCU 可提供几乎无限的写入寿命、快速/低功耗写入和数据灵活性。此参考设计演示了如何使用微控制器上的集成扩展扫描接口 (ESI) 来实现超低功耗(相对于采用外部电路的相同检测方法)。在水表设计中,耦合到巨磁阻 (GMR) 旋转检测传感器的 ESI (...)
封装 引脚数 下载
LQFP (VF) 32 了解详情
VQFN (RHB) 32 了解详情

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 认证摘要
  • 持续可靠性监测

推荐产品可能包含与 TI 此产品相关的参数、评估模块或参考设计。

支持与培训

视频