产品详细信息

Function Transceiver Protocols M-LVDS Number of transmitters 4 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (Mbps) 250 Input signal LVTTL, M-LVDS Output signal M-LVDS, LVTTL Rating Catalog Operating temperature range (C) -40 to 85
Function Transceiver Protocols M-LVDS Number of transmitters 4 Number of receivers 4 Supply voltage (V) 3.3 Signaling rate (Mbps) 250 Input signal LVTTL, M-LVDS Output signal M-LVDS, LVTTL Rating Catalog Operating temperature range (C) -40 to 85
VQFN (RGZ) 48 49 mm² 7 x 7
  • Low-Voltage Differential 30- to 55- Line Drivers and Receivers for Signaling Rates(1) Up to 250 Mbps; Clock Frequencies Up to
    125 MHz
  • Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
  • Controlled Driver Output Voltage Transition Times for Improved Signal Quality
  • –1 V to 3.4 V Common-Mode Voltage Range Allows Data Transfer With 2 V of Ground Noise
  • Bus Pins High Impedance When Driver Disabled or VCC ≤ 1.5 V
  • Independent Enables for each Driver and Receiver
  • Enhanced ESD Protection: 7 kV HBM on all Pins
  • 48 pin 7 X 7 QFN (RGZ)
  • M-LVDS Bus Power Up/Down Glitch Free
  • APPLICATIONS
    • Parallel Multipoint Data and Clock Transmission Via Backplanes and Cables
    • Low-Power High-Speed Short-Reach Alternative to TIA/EIA-485
    • Cellular Base Stations
    • Central-Office Switches
    • Network Switches and Routers
  • Low-Voltage Differential 30- to 55- Line Drivers and Receivers for Signaling Rates(1) Up to 250 Mbps; Clock Frequencies Up to
    125 MHz
  • Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
  • Controlled Driver Output Voltage Transition Times for Improved Signal Quality
  • –1 V to 3.4 V Common-Mode Voltage Range Allows Data Transfer With 2 V of Ground Noise
  • Bus Pins High Impedance When Driver Disabled or VCC ≤ 1.5 V
  • Independent Enables for each Driver and Receiver
  • Enhanced ESD Protection: 7 kV HBM on all Pins
  • 48 pin 7 X 7 QFN (RGZ)
  • M-LVDS Bus Power Up/Down Glitch Free
  • APPLICATIONS
    • Parallel Multipoint Data and Clock Transmission Via Backplanes and Cables
    • Low-Power High-Speed Short-Reach Alternative to TIA/EIA-485
    • Cellular Base Stations
    • Central-Office Switches
    • Network Switches and Routers

The SN65MLVD040 provides four half-duplex transceivers for transmitting and receiving Multipoint-Low-Voltage Differential Signals in full compliance with the TIA/EIA-899 (M-LVDS) standard, which are optimized to operate at signaling rates up to 250 Mbps. The driver outputs have been designed to support multipoint buses presenting loads as low as 30- and incorporates controlled transition times to allow for stubs off of the backplane transmission line.

The M-LVDS standard defines two types of receivers, designated as Type-1 and Type-2. Type-1 receivers have thresholds centered about zero with 25 mV of hysteresis to prevent output oscillations with loss of input; Type-2 receivers implement a failsafe by using an offset threshold. The xFSEN pins is used to select the Type-1 and Type-2 receiver for each of the channels. In addition, the driver rise and fall times are between 1 ns and 2 ns, complying with the M-LVDS standard to provide operation at 250 Mbps while also accommodating stubs on the bus. Receiver outputs are slew rate controlled to reduce EMI and crosstalk effects associated with large current surges. The M-LVDS standard allows for 32 nodes on the bus providing a high-speed replacement for RS-485 where lower common-mode can be tolerated or when higher signaling rates are needed.

The driver logic inputs and the receiver logic outputs are on separate pins rather than tied together as in some transceiver designs. The drivers have separate enables (DE) and so does the receivers (RE). This arrangement of separate logic inputs, logic outputs, and enable pins allows for a listen-while-talking operation. The devices are characterized for operation from –40°C to 85°C.

The SN65MLVD040 provides four half-duplex transceivers for transmitting and receiving Multipoint-Low-Voltage Differential Signals in full compliance with the TIA/EIA-899 (M-LVDS) standard, which are optimized to operate at signaling rates up to 250 Mbps. The driver outputs have been designed to support multipoint buses presenting loads as low as 30- and incorporates controlled transition times to allow for stubs off of the backplane transmission line.

The M-LVDS standard defines two types of receivers, designated as Type-1 and Type-2. Type-1 receivers have thresholds centered about zero with 25 mV of hysteresis to prevent output oscillations with loss of input; Type-2 receivers implement a failsafe by using an offset threshold. The xFSEN pins is used to select the Type-1 and Type-2 receiver for each of the channels. In addition, the driver rise and fall times are between 1 ns and 2 ns, complying with the M-LVDS standard to provide operation at 250 Mbps while also accommodating stubs on the bus. Receiver outputs are slew rate controlled to reduce EMI and crosstalk effects associated with large current surges. The M-LVDS standard allows for 32 nodes on the bus providing a high-speed replacement for RS-485 where lower common-mode can be tolerated or when higher signaling rates are needed.

The driver logic inputs and the receiver logic outputs are on separate pins rather than tied together as in some transceiver designs. The drivers have separate enables (DE) and so does the receivers (RE). This arrangement of separate logic inputs, logic outputs, and enable pins allows for a listen-while-talking operation. The devices are characterized for operation from –40°C to 85°C.

下载

您可能感兴趣的相似产品

open-in-new 比较产品
功能与比较器件相似。
SN65MLVD080 正在供货 8 通道半双工 M-LVDS 收发器 8-Channel M-LVDS Receiver Type-1
SN65MLVD082 正在供货 8 通道半双工 M-LVDS 收发器 8-Channel M-LVDS Receiver Type-2

技术文档

star = 有关此产品的 TI 精选热门文档
未找到结果。请清除搜索,并重试。
查看全部 5
类型 项目标题 下载最新的英语版本 日期
* 数据表 4-CHANNEL HALF-DUPLEX M-LVDS LINE TRANSCEIVERS 数据表 12 Feb 2010
应用手册 How Far, How Fast Can You Operate MLVDS? 06 Aug 2018
技术文章 Get Connected: LVDS for multipoint applications 16 Apr 2014
应用手册 An Introduction to M-LVDS and Clock and Data Distribution Applications (Rev. B) 26 Apr 2013
应用手册 SPI-Based Data Acquisition/Monitor Using the TLC2551 Serial ADC (Rev. A) 20 Nov 2001

设计和开发

如需其他信息或资源,请查看下方列表,点击标题即可进入详情页面。

仿真模型

SN65MLVD040 IBIS Model SN65MLVD040 IBIS Model

模拟工具

PSPICE-FOR-TI 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
模拟工具

TINA-TI 基于 SPICE 的模拟仿真程序

TINA-TI 提供了 SPICE 所有的传统直流、瞬态和频域分析以及更多。TINA 具有广泛的后处理功能,允许您按照希望的方式设置结果的格式。虚拟仪器允许您选择输入波形、探针电路节点电压和波形。TINA 的原理图捕获非常直观 - 真正的“快速入门”。

TINA-TI 安装需要大约 500MB。直接安装,如果想卸载也很容易。我们相信您肯定会爱不释手。

TINA 是德州仪器 (TI) 专有的 DesignSoft 产品。该免费版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需获取可用 TINA-TI 模型的完整列表,请参阅:SpiceRack - 完整列表 

需要 HSpice (...)

封装 引脚数 下载
VQFN (RGZ) 48 了解详情

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 认证摘要
  • 持续可靠性监测

推荐产品可能包含与 TI 此产品相关的参数、评估模块或参考设计。

支持与培训

视频