SLVAFH3 December   2022 TPS6213013A-Q1 , TPS62130A-Q1 , TPS62133A-Q1 , TPS62150A-Q1 , TPS62152A-Q1 , TPS62153A-Q1 , TPS62901-Q1 , TPS62902-Q1 , TPS62903-Q1 , TPS62992-Q1 , TPS62993-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2Achieving a Smaller Solution
    1. 2.1 Smaller Package and Fewer External Components
    2. 2.2 Smart Configuration Pin
    3. 2.3 VSET
  5. 3Reducing Power Loss
    1. 3.1 Junction Temperature
    2. 3.2 Automatic Efficiency Enhancement (AEE)
    3. 3.3 Quiescent Current
    4. 3.4 Auto PFM/PWM vs. Forced PWM
  6. 4Application Flexibility
    1. 4.1 1.0 MHz and 2.5 MHz Switching Frequencies
    2. 4.2 Lower and More Accurate Output Voltages
    3. 4.3 Output Voltage Discharge
    4. 4.4 Wettable Flanks
  7. 5Summary
  8. 6References

Smart Configuration Pin

The smart configuration pin is one of the primary contributors to the space savings and a key differentiators between the next generation devices and their predecessors. The MODE/S-CONF pin gives the user flexibility to select the settings of four features (FB/VSET, switching frequency, FPWM/PFM, and output discharge) with only one resistor. In the previous generation, each of these features would have to be configured individually. There are several advantages associated with this pin, too many to discuss in this document. To learn more about smart configuration pins and all of their design benefits, reference the document Multi-Function Pins for Easy Designing.