SLAAE29A January 2023 – December 2025 MSPM0C1105 , MSPM0C1106 , MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3105 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0L1105 , MSPM0L1106 , MSPM0L1227 , MSPM0L1227-Q1 , MSPM0L1228 , MSPM0L1228-Q1 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346 , MSPM0L2227 , MSPM0L2227-Q1 , MSPM0L2228 , MSPM0L2228-Q1
Keys (private keys in asymmetric schemes) need to be protected to ensure confidentiality. Only trusted code should be provisioned with a mechanism to securely deposit keys from flash memory to a location that only crypto engines can access (specifically refer to AES accelerator).

Only CSC can configure keys into KESTORE before INITDONE. Subsequently, the main application can configure the crypto engine to use one of the stored keys but can never access (read or write) any stored keys. The key transfer from KESTORE to crypto engine is performed securely and is not visible to the application code.
KEYSTORE contents will be wiped every BOOTRST and the store is unlocked for writing. KEYSTORE contents are unaffected by SYSRST and lower order resets.