ZHCS767B January   2012  – April 2016 TPA2080D1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
  4. 修订历史记录
  5. 器件比较表
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Operating Characteristics
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Differential Amplifier
        1. 9.3.1.1 Advantages of Fully Differential Amplifiers
      2. 9.3.2 Short-Circuit Auto-Recovery
      3. 9.3.3 Operation With DACs and CODECs
      4. 9.3.4 Speaker Load Limitation
      5. 9.3.5 Filter-Free Operation and Ferrite Bead Filters.
      6. 9.3.6 Boost Converter Auto Pass Through (APT)
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 TPA2080D1 With Differential Input Signal
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Surface Mount Inductor
          2. 10.2.1.2.2 Inductor Selection
          3. 10.2.1.2.3 Surface Mount Capacitors
          4. 10.2.1.2.4 Boost Converter Capacitor Selection
          5. 10.2.1.2.5 Decoupling Capacitors
          6. 10.2.1.2.6 Input Capacitors
          7. 10.2.1.2.7 Boost Converter Component Section
        3. 10.2.1.3 Application Curves
      2. 10.2.2 TPA2080D1 With Single-Ended Signals.
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Component Placement
      2. 12.1.2 Thermal Considerations
      3. 12.1.3 Pad Size
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 器件支持
      1. 13.1.1 第三方产品免责声明
      2. 13.1.2 器件命名规则
        1. 13.1.2.1 升压项
    2. 13.2 社区资源
    3. 13.3 商标
    4. 13.4 静电放电警告
    5. 13.5 Glossary
  14. 14机械、封装和可订购信息
    1. 14.1 封装尺寸

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Inductor Selection

Inductor current rating is determined by the requirements of the load. The inductance is determined by two factors: the minimum value required for stability and the maximum ripple current permitted in the application. Use Equation 1 to determine the required current rating. Equation 1 shows the approximate relationship between the average inductor current, IL, to the load current, load voltage, and input voltage (IPVDD, PVDD, and VBAT, respectively). Insert IPVDD, PVDD, and VBAT into Equation 1 and solve for IL. The inductor must maintain at least 90% of its initial inductance value at this current.

Equation 1. TPA2080D1 EQ1_IL_los638.gif

Ripple current, ΔIL, is peak-to-peak variation in inductor current. Smaller ripple current reduces core losses in the inductor and reduces the potential for EMI. Use Equation 2 to determine the value of the inductor, L. Equation 2 shows the relationship between inductance L, VBAT, PVDD, the switching frequency, fBOOST, and ΔIL. Insert the maximum acceptable ripple current into Equation 2 and solve for L.

Equation 2. TPA2080D1 EQ2_L_los638.gif

ΔIL is inversely proportional to L. Minimize ΔIL as much as is necessary for a specific application. Increase the inductance to reduce the ripple current. Do not use greater than 4.7 μH, as this prevents the boost converter from responding to fast output current changes properly. If using above 3.3 µH, then use at least 10-µF capacitance on PVDD to ensure boost converter stability.

The typical inductor value range for the TPA2080D1 is 2.2 μH to 3.3 µH. Select an inductor with less than 0.5-Ω DC resistance, DCR. Higher DCR reduces total efficiency due to an increase in voltage drop across the inductor.

Table 3. Sample Inductors

L
(µH)
SUPPLIER COMPONENT CODE SIZE
(LxWxH mm)
DCR TYP
(mΩ)
ISAT MAX
(A)
C RANGE
2.2 Chilisin Electronics Corp. CLCN252012T-2R2M-N 2.5 x 2 x 1.2 105 1.2 10 to 22 µF, 16 V
10 to 22 µF, 10 V
2.2 Toko 1239AS-H-2R2N=P2 2.5 x 2 x 1.2 96 2.3
2.2 Coilcraft XFL4020-222MEC 4 x 4 x 2.15 22 3.5
3.3 Toko 1239AS-H-3R3N=P2 2.5 x 2 x 1.2 160 2 10 to 22 µF, 10 V
3.3 Coilcraft XFL4020-332MEC 4 x 4 x 2.15 35 2.8