ZHCSPX3A October   2022  – November 2022 TMUX7436F

PRODMIX  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Electrical Characteristics: Global
    6. 6.6  ±15 V Dual Supply: Electrical Characteristics
    7. 6.7  ±20 V Dual Supply: Electrical Characteristics
    8. 6.8  12 V Single Supply: Electrical Characteristics
    9. 6.9  36 V Single Supply: Electrical Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1  On-Resistance
    2. 7.2  Off-Leakage Current
    3. 7.3  On-Leakage Current
    4. 7.4  Input and Output Leakage Current Under Overvoltage Fault
    5. 7.5  Enable Delay Time
    6. 7.6  Break-Before-Make Delay
    7. 7.7  Transition Time
    8. 7.8  Fault Response Time
    9. 7.9  Fault Recovery Time
    10. 7.10 Fault Flag Response Time
    11. 7.11 Fault Flag Recovery Time
    12. 7.12 Charge Injection
    13. 7.13 Off Isolation
    14. 7.14 Crosstalk
    15. 7.15 Bandwidth
    16. 7.16 THD + Noise
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Flat ON-Resistance
      2. 8.3.2 Protection Features
        1. 8.3.2.1 Input Voltage Tolerance
        2. 8.3.2.2 Powered-Off Protection
        3. 8.3.2.3 Fail-Safe Logic
        4. 8.3.2.4 Overvoltage Protection and Detection
        5. 8.3.2.5 Adjacent Channel Operation During Fault
        6. 8.3.2.6 ESD Protection
        7. 8.3.2.7 Latch-Up Immunity
        8. 8.3.2.8 EMC Protection
      3. 8.3.3 Overvoltage Fault Flags
      4. 8.3.4 Bidirectional Operation
      5. 8.3.5 1.8 V Logic Compatible Inputs
      6. 8.3.6 Integrated Pull-Down Resistor on Logic Pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Mode
      2. 8.4.2 Fault Mode
      3. 8.4.3 Truth Tables
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • PW|16
散热焊盘机械数据 (封装 | 引脚)
订购信息

36 V Single Supply: Electrical Characteristics

VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted) 
Typical at VDD = +36 V, VSS = 0 V, TA = 25℃  (unless otherwise noted)
PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT
ANALOG SWITCH
RON On-resistance VS = 0 V to 30 V,
IS = –10 mA
25°C 8.6 11
–40°C to +85°C 14
–40°C to +125°C 17
ΔRON On-resistance mismatch between channels VS = 0 V to 30 V,
IS = –10 mA
25°C 0.06 0.5
–40°C to +85°C 0.6
–40°C to +125°C 0.7
RFLAT On-resistance flatness VS = 0 V to 30 V,
IS = –10 mA
25°C 0.07 0.4
–40°C to +85°C 0.5
–40°C to +125°C 0.5
RON_DRIFT On-resistance drift VS = 18 V, IS = –1 mA –40°C to +125°C 0.04 Ω/°C
IS(OFF) Input leakage current(1) VDD = 39.6 V, VSS = 0 V
Switch state is off
VS = 30 V / 1 V
VD = 1 V / 30 V
25°C –0.7 0.05 0.7 nA
–40°C to +85°C –2 2
–40°C to +125°C –11 11
ID(OFF) Output off leakage current(1) VDD = 39.6 V, VSS = 0 V
Switch state is off
VS = 30 V / 1 V
VD = 1 V / 30 V
25°C –1.4 0.1 1.4 nA
–40°C to +85°C –4 4
–40°C to +125°C –24 24
IS(ON)
ID(ON)
Output on leakage current(2) VDD = 39.6 V, VSS = 0 V
Switch state is on
VS = VD = 30 V or 1 V
25°C –1.4 0.15 1.4 nA
–40°C to +85°C –4 4
–40°C to +125°C –27 27
FAULT CONDITION
IS(FA) Input leakage current
durring overvoltage
VS = 60 / –40 V,
VDD = 39.6 V, VSS = 0 V, GND = 0 V
–40°C to +125°C ±90 µA
IS(FA) Grounded Input leakage current
during overvoltage with
grounded supply voltages
VS = ± 60 V, 
VDD = VSS = 0 V, GND = 0 V
–40°C to +125°C ±125 µA
IS(FA) Floating Input leakage current
during overvoltage with
floating supply voltages
VS = ± 60 V, 
VDD = VSS = floating, GND = 0 V,
–40°C to +125°C ±125 µA
ID(FA) Output leakage current
during overvoltage
VS = 60 / –40 V, 
VDD = 39.6 V, VSS = 0, GND = 0V
25°C –20 ±2 20 nA
–40°C to +85°C –30 30
–40°C to +125°C –60 60
ID(FA) Grounded Output leakage current
during overvoltage with
grounded supply voltages
VS = ± 60 V, GND = 0 V,
VDD = VSS =  0 V
25°C –30 ±10 30 nA
–40°C to +85°C –50 50
–40°C to +125°C –90 90
ID(FA) Floating Output leakage current
during overvoltage with
floating supply voltages
VS = ± 60 V, GND = 0 V,
VDD = VSS = floating
25°C ±4 µA
–40°C to +85°C ±6
–40°C to +125°C ±8
IIH High-level input current VEN = VSELx = VDR = VDD   25°C ±2.7 µA
–40°C to +125°C ±3.1
IIL Low-level input current VEN = VSELx = VDR = 0   25°C ±1 µA
–40°C to +125°C ±1.1
SWITCHING CHARACTERISTICS
tON (EN) Enable turn-on time VS = 18 V,
RL = 300 Ω, CL= 12 pF
25°C 370 520 ns
–40°C to +85°C 550
–40°C to +125°C 560
tOFF (EN) Enable turn-off time VS = 18 V,
RL = 300 Ω, CL= 12 pF
25°C 100 210 ns
–40°C to +85°C 230
–40°C to +125°C 230
tTRAN Transition time VS = 18 V,
RL = 300 Ω, CL= 12 pF
25°C 365 540 ns
–40°C to +85°C 560
–40°C to +125°C 570
tRESPONSE Fault response time RL = 300 Ω, CL= 12 pF 25°C 120 340 ns
–40°C to +85°C 360
–40°C to +125°C 385
tRECOVERY Fault recovery time RL = 300 Ω, CL= 12 pF 25°C 1250 2350 ns
–40°C to +85°C 2850
–40°C to +125°C 2850
tRESPONSE(FLAG) Fault flag response time RL = 300 Ω, CL= 12 pF, 
RPU = 1 kΩ, CL_xF = 12 pF
25°C 100 ns
tRECOVERY(FLAG) Fault flag recovery time RL = 300 Ω, CL= 12 pF, 
RPU = 1 kΩ, CL_xF = 12 pF
25°C 1 µs
tBBM Break-before-make time delay VS = 18 V, RL = 300 Ω, CL= 12 pF 25°C 160 270 ns
QINJ Charge injection VS = 18 V, CL = 1 nF 25°C –300 pC
OISO Off-isolation RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz
25°C –56 dB
XTALK Intra-channel crosstalk RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz
25°C –59 dB
Inter-channel crosstalk RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz
25°C –80
BW –3 dB bandwidth RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 6 V
25°C 215 MHz
ILOSS Insertion loss RS = 50 Ω, RL = 50 Ω, CL = 5 pF,
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz
25°C –0.7 dB
THD+N Total harmonic distortion plus noise RS = 50 Ω, RL = 10 kΩ,
VS = 18 VPP, VBIAS = 18 V,
f = 20 Hz to 20 kHz
25°C 0.0008 %
CS(OFF) Input off-capacitance f = 1 MHz, VS = 18 V 25°C 14 pF
CD(OFF) Output off-capacitance f = 1 MHz, VS = 18 V 25°C 28 pF
CS(ON)
CD(ON)
Input/Output on-capacitance f = 1 MHz, VS = 18 V 25°C 31 pF
POWER SUPPLY
IDD VDD supply current VDD = 39.6 V, VSS = 0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V or VDD
25°C 0.3 0.5 mA
–40°C to +85°C 0.5
–40°C to +125°C 0.6
ISS VSS supply current VDD = 39.6 V, VSS = 0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V or VDD
25°C 0.14 0.4 mA
–40°C to +85°C 0.4
–40°C to +125°C 0.4
IGND GND current VDD = 39.6 V, VSS = 0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V or VDD
25°C 0.06 mA
IDD(FA) VDD supply current under fault VS = 60 / –40 V,
VDD = 39.6 V, VSS =  0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V or VDD
25°C 0.25 1.2 mA
–40°C to +85°C 1.6
–40°C to +125°C 1.6
ISS(FA) VSS supply current under fault VS = 60 / –40 V,
VDD = 39.6 V, VSS =  0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V or VDD
25°C 0.15 0.5 mA
–40°C to +85°C 0.5
–40°C to +125°C 0.5
IGND(FA) GND current under fault VS = 60 / –40 V,
VDD = 39.6 V, VSS =  0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V or VDD
25°C 0.1 mA
IDD(DISABLE) VDD supply current (disable mode) VDD = 39.6 V, VSS =  0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V
25°C 0.15 0.5 mA
–40°C to +85°C 0.5
–40°C to +125°C 0.5
ISS(DISABLE) VSS supply current (disable mode) VDD = 39.6 V, VSS =  0 V,
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V
25°C 0.1 0.4 mA
–40°C to +85°C 0.4
–40°C to +125°C 0.4
When VS is 30 V, VD is 1 V. Or when VS is 1 V, VD is 30 V.
When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.