ZHCSJJ3E July   2009  – April 2019 TCA9555

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Interface Timing Requirements
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 5-V Tolerant I/O Ports
      2. 9.3.2 Hardware Address Pins
      3. 9.3.3 Interrupt (INT) Output
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-On Reset (POR)
      2. 9.4.2 Powered-Up
    5. 9.5 Programming
      1. 9.5.1 I/O Port
      2. 9.5.2 I2C Interface
        1. 9.5.2.1 Bus Transactions
          1. 9.5.2.1.1 Writes
          2. 9.5.2.1.2 Reads
      3. 9.5.3 Device Address
      4. 9.5.4 Control Register and Command Byte
    6. 9.6 Register Maps
      1. 9.6.1 Register Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Calculating Junction Temperature and Power Dissipation
        2. 10.2.2.2 Minimizing ICC When I/O Is Used to Control LED
        3. 10.2.2.3 Pull-Up Resistor Calculation
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档
    2. 13.2 接收文档更新通知
    3. 13.3 社区资源
    4. 13.4 商标
    5. 13.5 静电放电警告
    6. 13.6 术语表
  14. 14机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Minimizing ICC When I/O Is Used to Control LED

When an I/O is used to control an LED, normally it is connected to VCC through a resistor as shown in Figure 34. Because the LED acts as a diode, when the LED is off, the I/O VIN is about 1.2 V less than VCC. The ΔICC parameter in the Electrical Characteristics table shows how ICC increases as VIN becomes lower than VCC. For battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to VCC when the LED is off to minimize current consumption.

Figure 35 shows a high-value resistor in parallel with the LED. Figure 36 shows VCC less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O VIN at or above VCC and prevent additional supply current consumption when the LED is off.

TCA9555 hi_val_res_cps200.gifFigure 35. High-Value Resistor in Parallel With LED
TCA9555 dev_supp_cps200.gifFigure 36. Device Supplied by Lower Voltage