ZHCSK40D August   2019  – July 2020 OPA810

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: 10 V
    6. 7.6  Electrical Characteristics: 24 V
    7. 7.7  Electrical Characteristics: 5 V
    8. 7.8  Typical Characteristics: VS = 10 V
    9. 7.9  Typical Characteristics: VS = 24 V
    10. 7.10 Typical Characteristics: VS = 5 V
    11. 7.11 Typical Characteristics: ±2.375-V to ±12-V Split Supply
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 OPA810 Architecture
      2. 8.3.2 ESD Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Split-Supply Operation (±2.375 V to ±13.5 V)
      2. 8.4.2 Single-Supply Operation (4.75 V to 27 V)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Amplifier Gain Configurations
      2. 9.1.2 Selection of Feedback Resistors
      3. 9.1.3 Noise Analysis and the Effect of Resistor Elements on Total Noise
    2. 9.2 Typical Applications
      1. 9.2.1 Transimpedance Amplifier
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 High-Z Input Data Acquisition Front-End
      3. 9.2.3 Multichannel Sensor Interface
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Considerations
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Split-Supply Operation (±2.375 V to ±13.5 V)

To facilitate testing with common lab equipment, the OPA810 can be configured to allow for split-supply operation (see the OPA2810DGK Evaluation Module user guide). This configuration eases lab testing because the mid-point between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and other lab equipment reference the inputs and outputs to ground. Figure 9-1 depicts the OPA810 configured as a noninverting amplifier and Figure 9-2 illustrates the OPA810 configured as an inverting amplifier. For split-supply operation referenced to ground, the power supplies VS+ and VS- are symmetrical around ground and VREF is at GND. Split-supply operation is preferred in systems where the signals swing around ground because of the ease-of-use; however, the system requires two supply rails.