ZHCSHO0C February   2018  – March 2023 LMZM23600

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 System Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Control Scheme
      2. 8.3.2 Soft-Start Function
      3. 8.3.3 Enable and External UVLO Function
      4. 8.3.4 Current Limit
      5. 8.3.5 Hiccup Mode
      6. 8.3.6 Power Good (PGOOD) Function
      7. 8.3.7 MODE/SYNC Function
        1. 8.3.7.1 Forced PWM Mode
        2. 8.3.7.2 Auto PFM Mode
        3. 8.3.7.3 Dropout Mode
        4. 8.3.7.4 SYNC Operation
      8. 8.3.8 Thermal Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown
      2. 8.4.2 FPWM Operation
      3. 8.4.3 Auto PFM Mode Operation
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Maximum Input Voltage for VOUT < 2.5 V
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Custom Design With WEBENCH® Tools
        2. 9.2.2.2 Input Capacitor Selection
        3. 9.2.2.3 Output Capacitor Selection
        4. 9.2.2.4 Feedback Voltage Divider for Adjustable Output Voltage Versions
        5. 9.2.2.5 RPU - PGOOD Pullup Resistor
        6. 9.2.2.6 VIN Divider and Enable
      3. 9.2.3 Application Curves
        1. 9.2.3.1 VOUT = 5 V
        2. 9.2.3.2 VOUT = 3.3 V
        3. 9.2.3.3 VOUT = 12 V
        4. 9.2.3.4 VOUT = 15 V
        5. 9.2.3.5 VOUT = 2.5 V
        6. 9.2.3.6 VOUT = 1.2 V and VOUT = 1.8 V
        7. 9.2.3.7 VOUT = 5 V and 3.3 V Fixed Output Options
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Supply Voltage Range
      2. 9.4.2 Supply Current Capability
      3. 9.4.3 Supply Input Connections
        1. 9.4.3.1 Voltage Drops
        2. 9.4.3.2 Stability
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
        1. 9.5.1.1 Thermal Design
      2. 9.5.2 Layout Examples
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 第三方产品免责声明
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 静电放电警告
    7. 10.7 术语表
  11. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Thermal Design

Thermal design is an important aspect of any power regulator design. Every supply dissipates some power, and providing sufficient copper area for proper heat dissipation is important. The package thermal resistance curves vs PCB copper area along with the power dissipation curves in Section 7.7 can be used to estimate the necessary copper area for the design. Consider Equation 7 and Figure 9-48.

Equation 7. GUID-55B8DC0E-54FF-49F1-A362-6AFFC8724331-low.gif
GUID-2EE746D4-5FCE-4B1E-9B6B-CEC6FBC4237D-low.gifFigure 9-48 Package Thermal Resistance vs Board Copper Area

As an example, consider a typical application of 24-V input 5-V output with 0.5 A of output current and estimate the required heat-sinking area. For this example consider a maximum ambient temperature TA_MAX of 95°C and no air flow or additional heat sinking besides the PCB layers. Calculate the maximum allowed package thermal resistance for this design specification.

From Section 7.7, it can be seen that the power dissipation for 24-V input, 5-V output, and 0.5A load is 0.4 W. Based on Equation 7, for this power dissipation level and 95°C maximum ambient temperature, the maximum package thermal resistance must be less than 75°C/W. To achieve this thermal resistance with a 2-layer board, the approximate area of the board copper must be at least 5 cm2.