ZHCU458I march   2018  – july 2023

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 主要系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 主要产品
      1. 2.2.1  UCC21710
      2. 2.2.2  UCC5320
      3. 2.2.3  TMS320F28379D
      4. 2.2.4  AMC1305M05
      5. 2.2.5  OPA4340
      6. 2.2.6  LM76003
      7. 2.2.7  PTH08080W
      8. 2.2.8  TLV1117
      9. 2.2.9  OPA350
      10. 2.2.10 UCC14240
    3. 2.3 系统设计原理
      1. 2.3.1 三相 T 型逆变器
        1. 2.3.1.1 架构概述
        2. 2.3.1.2 LCL 滤波器设计
        3. 2.3.1.3 电感器设计
        4. 2.3.1.4 SiC MOSFET 选型
        5. 2.3.1.5 损耗估算
        6. 2.3.1.6 散热注意事项
      2. 2.3.2 电压感测
      3. 2.3.3 电流检测
      4. 2.3.4 系统电源
        1. 2.3.4.1 主输入电源调节
        2. 2.3.4.2 隔离式偏置电源
      5. 2.3.5 栅极驱动器
        1. 2.3.5.1 1200V SiC MOSFET
        2. 2.3.5.2 650V SiC MOSFET
        3. 2.3.5.3 栅极驱动器辅助电源
      6. 2.3.6 控制设计
        1. 2.3.6.1 电流环路设计
        2. 2.3.6.2 PFC 直流母线电压调节环路设计
  9. 3硬件、软件、测试要求和测试结果
    1. 3.1 需要的硬件和软件
      1. 3.1.1 硬件
        1. 3.1.1.1 所需的测试硬件
        2. 3.1.1.2 设计中使用的微控制器资源 (TMS320F28379D)
        3. 3.1.1.3 F28377D、F28379D 控制卡设置
        4. 3.1.1.4 设计中使用的微控制器资源 (TMS320F280039C)
      2. 3.1.2 软件
        1. 3.1.2.1 固件入门
          1. 3.1.2.1.1 打开 CCS 工程
          2. 3.1.2.1.2 Digital Power SDK 软件架构
          3. 3.1.2.1.3 中断和实验结构
          4. 3.1.2.1.4 构建、加载和调试固件
        2. 3.1.2.2 保护方案
        3. 3.1.2.3 PWM 开关方案
        4. 3.1.2.4 ADC 负载
    2. 3.2 测试和结果
      1. 3.2.1 实验 1
      2. 3.2.2 测试逆变器运行情况
        1. 3.2.2.1 实验 2
        2. 3.2.2.2 实验 3
        3. 3.2.2.3 实验 4
      3. 3.2.3 测试 PFC 运行情况
        1. 3.2.3.1 实验 5
        2. 3.2.3.2 实验 6
        3. 3.2.3.3 实验 7
      4. 3.2.4 效率测试设置
      5. 3.2.5 测试结果
        1. 3.2.5.1 PFC 模式 - 230VRMS、400V L-L
          1. 3.2.5.1.1 PFC 启动 – 230VRMS、400V L-L 交流电压
          2. 3.2.5.1.2 230VRMS、400V L-L 下的稳态结果 - PFC 模式
          3. 3.2.5.1.3 220VRMS、50Hz 下的效率和 THD 结果 – PFC 模式
          4. 3.2.5.1.4 阶跃负载变化时的瞬态测试
        2. 3.2.5.2 PFC 模式 - 120VRMS、208V L-L
          1. 3.2.5.2.1 120VRMS、208V L-L 下的稳态结果 - PFC 模式
          2. 3.2.5.2.2 120VRMS 下的效率和 THD 结果 - PFC 模式
        3. 3.2.5.3 逆变器模式
          1. 3.2.5.3.1 逆变器闭环结果
          2. 3.2.5.3.2 效率和 THD 结果 - 逆变器模式
          3. 3.2.5.3.3 逆变器 - 瞬态测试
      6. 3.2.6 开环逆变器测试结果
  10. 4设计文件
    1. 4.1 原理图
    2. 4.2 物料清单
    3. 4.3 PCB 布局建议
      1. 4.3.1 布局图
    4. 4.4 Altium 工程
    5. 4.5 光绘文件
    6. 4.6 装配图
  11. 5商标
  12. 6关于作者
  13. 7修订历史记录

SiC MOSFET 选型

如架构概述中所示,主开关器件需要支持完整的开关电压。若要支持此设计的 1000V 直流链路电压,请使用 1200V FET;然而,在这个电压下,由于存在几个因素而需要迁移到 SiC:

  • 1200V SiC MOSFET 的开关速度明显快于传统 IGBT,因此能够降低开关损耗。
  • SiC MOSFET 中的反向恢复电荷明显较小,因此可降低电压和电流过冲。
  • 由于导通损耗降低,因此满载时的温度依赖性更低。

中间开关仅承受一半的直流链路电压,在此设计中为 500V。因此,650V 器件是可以接受的。凭借这些相同的特性,完整的 SiC 设计可提供出色的性能。对于本设计,反向恢复损耗和电压过冲限制了对器件的选择。因此,使用了 1200V SiC MOSFET + 650V MOSFET 设计。

导通损耗主要由 1200V SiC MOSFET 的 RDS(on)和 650V SiC MOSFET 的 RDS(on) 决定。75mΩ SiC 器件具有良好的高温性能,并且 RDS(on) 在 150°C 结温条件下仅增加 40%。使用数据表中的高温 I-V 曲线,计算器件的导通损耗。

开关损耗是每个开关瞬态的开关频率和开关能量的函数,开关能量与开关瞬态下的器件电流和电压有关。使用数据表中的开关能量曲线,可以估算总开关损耗。

同样,可以估算所有器件的导通损耗和开关损耗,还可以估算效率。借助热系统设计的热阻信息,可选择合适的器件额定值。1200V/75mΩ SiC MOSFET 和 650V/60mΩ SiC MOSFET 在热性能、效率和成本之间达到了很好的平衡。