ZHCSP56 September   2023 TPS1HTC30-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
    1. 5.1 Recommended Connections for Unused Pins
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Timing Diagrams
    9. 6.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 功能方框图
    3. 8.3 Feature Description
      1. 8.3.1 Accurate Current Sense
      2. 8.3.2 Programmable Current Limit
        1. 8.3.2.1 Capacitive Charging
      3. 8.3.3 Inductive-Load Switching-Off Clamp
      4. 8.3.4 Inductive Load Demagnetization
      5. 8.3.5 Full Protections and Diagnostics
        1. 8.3.5.1 Short-Circuit and Overload Protection
        2. 8.3.5.2 Open-Load Detection
        3. 8.3.5.3 Thermal Protection Behavior
        4. 8.3.5.4 Overvoltage (OVP) Protection
        5. 8.3.5.5 UVLO Protection
        6. 8.3.5.6 Reverse Polarity Protection
        7. 8.3.5.7 Protection for MCU I/Os
      6. 8.3.6 Diagnostic Enable Function
    4. 8.4 Device Functional Modes
      1. 8.4.1 Working Mode
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Dynamically Changing Current Limit
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
        1. 9.4.2.1 Without a GND Network
        2. 9.4.2.2 With a GND Network
        3. 9.4.2.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Reverse Polarity Protection

Method 1: Blocking diode connected with VS. Both the device and load are protected when in reverse polarity.

GUID-20211103-SS0I-LFKK-K344-C8WVKPKG890T-low.svg Figure 8-12 Reverse Protection With Blocking Diode

Method 2 (GND network protection): Only the high-side device is protected under this connection. The load reverse loop is limited by the load itself. Note when reverse polarity happens, the continuous reverse current through the power FET must be less than Irev. Of the three types of ground pin networks, TI strongly recommends type 3 (the resistor and diode in parallel). No matter what types of connection are between the device GND and the board GND, if a GND voltage shift happens, make sure the following proper connections for the normal operation:

  • TI recommends to leave floating.
  • Connect the current limit programmable resistor to the device GND.
GUID-20211103-SS0I-8FGP-DRFZ-GX5QZ1NDGQSR-low.svg Figure 8-13 Reverse Protection With GND Network
  • Type 1 (resistor): The higher resistor value contributes to a better current limit effect during the reverse battery event or negative ISO pulses. However, the higher resistor leads to higher GND shift during normal operation mode. Also, consider the resistor power dissipation.
    Equation 9. GUID-7AEF5779-BD78-410E-AEEE-C649ADDEC9A5-low.gif
    Equation 10. GUID-DB4D04A8-6EBD-4932-ADE7-F68969C0D18D-low.gif

    where

    • VGNDshift is the maximum value for the GND shift, determined by the HSS and microcontroller. TI suggests a value ≤ 0.6 V.
    • Inom is the nominal operating current.
    • –VCC is the maximum reverse voltage seen on the battery line.
    • –IGND is the maximum reverse current the ground pin can withstand, which is available in the Absolute Maximum Ratings.

    If multiple high-side power switches are used, the resistor can be shared among devices.

  • Type 2 (diode): A diode is needed to block the reverse voltage, which also brings a ground shift (≈ 600 mV). However, an inductive load is not acceptable to avoid an abnormal status when switching off.
  • Type 3 (resistor and diode in parallel (recommended)): A peak negative spike can occur when the inductive load is switching off, which can damage the HSD or the diode. So, TI recommends a resistor in parallel with the diode when driving an inductive load. The recommended selection are 1-kΩ resistor in parallel with an IF > 100-mA diode. If multiple high-side switches are used, the resistor and diode can be shared among devices.