ZHCSHQ6G September   1999  – September 2015 LMC7101 , LMC7101Q-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      示例应用
  4. 修订历史记录
  5. 引脚配置和功能
    1.     SOT-23 的
  6. 规格
    1. 6.1  绝对最大额定值
    2. 6.2  ESD 额定值:LMC7101
    3. 6.3  ESD 额定值:LMC7101Q-Q1
    4. 6.4  建议运行条件
    5. 6.5  热性能信息
    6. 6.6  电气特性:2.7V
    7. 6.7  直流电气特性:3V
    8. 6.8  直流电气特性:5V
    9. 6.9  直流电气特性:15V
    10. 6.10 交流电气特性:5V
    11. 6.11 交流电气特性:15V
    12. 6.12 典型特性
      1. 6.12.1 典型特性:2.7V
      2. 6.12.2 典型特性:3V
      3. 6.12.3 典型特性:5V
      4. 6.12.4 典型特性:15V
  7. 详细 说明
    1. 7.1 概述
    2. 7.2 功能框图
    3. 7.3 特性 说明
      1. 7.3.1 LMC7101 微型放大器的优势
        1. 7.3.1.1 尺寸
        2. 7.3.1.2 高度
        3. 7.3.1.3 信号完整性
        4. 7.3.1.4 简化的板布局
        5. 7.3.1.5 低 THD
        6. 7.3.1.6 低电源电流
        7. 7.3.1.7 宽电压范围
    4. 7.4 器件功能模式
      1. 7.4.1 输入共模
        1. 7.4.1.1 电压范围
  8. 应用和实现
    1. 8.1 应用信息
      1. 8.1.1 轨至轨输出
      2. 8.1.2 电容负载容差
      3. 8.1.3 使用高阻值反馈电阻器时的输入电容补偿
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计流程
      3. 8.2.3 应用曲线
  9. 电源建议
  10. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
  11. 11器件和文档支持
    1. 11.1 文档支持
    2. 11.2 相关链接
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

使用高阻值反馈电阻器时的输入电容补偿

在使用具有极高阻值(通常大于 500kΩ)的反馈电阻器时,借助于传感器、光电二极管和电路板寄生效应,大反馈电阻可能会与输入电容发生反应,从而减小相位裕度。

可通过添加反馈电容器来补偿输入电容的影响。反馈电容器(如Figure 65 所示)Cf 首先通过Equation 1Equation 2 进行估算,这通常会提供明显的过度补偿。

Equation 1. LMC7101 LMC7101Q-Q1 1199174.gif
Equation 2. R1 CIN ≤ R2 Cf

印刷电路板杂散电容可能大于或小于试验电路板的杂散电容,因此 CF 的实际最佳值可能不同。必须在实际电路中检查 CF 的值(有关更详细的介绍,请参阅《CMOS 四路运算放大器》(SNOSBZ3))。

LMC7101 LMC7101Q-Q1 1199112.pngFigure 65. 抵消输入电容的影响