SNVS424D January   2006  – December 2014 LM5106

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Start-up and UVLO
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Dissipation Considerations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 HS Transient Voltages Below Ground
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)(1)

MIN MAX UNIT
VDD to VSS –0.3 18 V
HB to HS –0.3 18 V
IN and EN to VSS –0.3 VDD + 0.3 V
LO to VSS –0.3 VDD + 0.3 V
HO to VSS HS – 0.3 HB + 0.3 V
HS to VSS(5) 100 V
HB to VSS 118 V
RDT to VSS –0.3 5 V
Junction Temperature 150 °C
Storage temperature range, Tstg –55 150 °C
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VDD 8 14 V
HS(5) –1 100 V
HB HS + 8 HS + 14 V
HS Slew Rate < 50 V/ns
Junction Temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LM5102 UNIT
DGS DPR(2)
10 PINS 10 PINS
RθJA Junction-to-ambient thermal resistance 165.3 37.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 58.9 38.1
RθJB Junction-to-board thermal resistance 54.4 14.9
ψJT Junction-to-top characterization parameter 6.2 0.4
ψJB Junction-to-board characterization parameter 83.6 15.2
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 4.4
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).
(2) Four-layer board with Cu finished thickness 1.5 oz, 1 oz, 1 oz, 1.5 oz. Maximum die size used. 5x body length of Cu trace on PCB top. 50-mm × 50-mm ground and power planes embedded in PCB. See Application Note AN-1187 Leadless Leadframe Package (LLP) (SNOA401).

6.5 Electrical Characteristics

MIN and MAX limits apply over the full operating junction temperature range. Unless otherwise specified, TJ = +25°C, VDD = HB = 12 V, VSS = HS = 0 V, EN = 5 V. No load on LO or HO. RDT= 100kΩ(3).
SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENTS
IDD VDD Quiescent Current IN = EN = 0 V 0.34 0.6 mA
IDDO VDD Operating Current f = 500 kHz 2.1 3.5 mA
IHB Total HB Quiescent Current IN = EN = 0 V 0.06 0.2 mA
IHBO Total HB Operating Current f = 500 kHz 1.5 3 mA
IHBS HB to VSS Current, Quiescent HS = HB = 100 V 0.1 10 µA
IHBSO HB to VSS Current, Operating f = 500 kHz 0.5 mA
INPUT IN and EN
VIL Low Level Input Voltage Threshold 0.8 1.8 V
VIH High Level Input Voltage Threshold 1.8 2.2 V
Rpd Input Pulldown Resistance Pin IN and EN 100 200 500
DEAD-TIME CONTROLS
VRDT Nominal Voltage at RDT 2.7 3 3.3 V
IRDT RDT Pin Current Limit RDT = 0 V 0.75 1.5 2.25 mA
UNDERVOLTAGE PROTECTION
VDDR VDD Rising Threshold 6.2 6.9 7.6 V
VDDH VDD Threshold Hysteresis 0.5 V
VHBR HB Rising Threshold 5.9 6.6 7.3 V
VHBH HB Threshold Hysteresis 0.4 V
LO GATE DRIVER
VOLL Low-Level Output Voltage ILO = 100 mA 0.21 0.4 V
VOHL High-Level Output Voltage ILO = –100 mA,
VOHL = VDD – VLO
0.5 0.85 V
IOHL Peak Pullup Current LO = 0 V 1.2 A
IOLL Peak Pulldown Current LO = 12 V 1.8 A
HO GATE DRIVER
VOLH Low-Level Output Voltage IHO = 100 mA 0.21 0.4 V
VOHH High-Level Output Voltage IHO = –100 mA,
VOHH = HB – HO
0.5 0.85 V
IOHH Peak Pullup Current HO = 0 V 1.2 A
IOLH Peak Pulldown Current HO = 12 V 1.8 A
THERMAL RESISTANCE
θJA Junction to Ambient See(2)(4) 40 °C/W

6.6 Switching Characteristics

MIN and MAX limits apply over the full operating junction temperature range. Unless otherwise specified, TJ = +25°C, VDD = HB = 12 V, VSS = HS = 0 V, No Load on LO or HO(3).
SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tLPHL Lower Turn-Off Propagation Delay 32 56 ns
tHPHL Upper Turn-Off Propagation Delay 32 56
tLPLH Lower Turn-On Propagation Delay RDT = 100k 400 520 640
tHPLH Upper Turn-On Propagation Delay RDT = 100k 450 570 690
tLPLH Lower Turn-On Propagation Delay RDT = 10k 85 115 160
tHPLH Upper Turn-On Propagation Delay RDT = 10k 85 115 160
ten, tsd Enable and Shutdown propagation delay 36
DT1, DT2 Dead-time LO OFF to HO ON & HO OFF to LO ON RDT = 100k 510
RDT = 10k 86
MDT Dead-time matching RDT = 100k 50
tR Either Output Rise Time CL = 1000pF 15
tF Either Output Fall Time CL = 1000pF 10
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Recommended Operating Conditions are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics.
(2) Four-layer board with Cu finished thickness 1.5/1.0/1.0/1.5 oz. Maximum die size used. 5x body length of Cu trace on PCB top. 50-mm × 50-mm ground and power planes embedded in PCB. See AN-1187 Leadless Leadframe Package (LLP), SNOA401.
(3) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).
(4) The θJA is not a constant for the package and depends on the printed circuit board design and the operating conditions.
(5) In the application the HS node is clamped by the body diode of the external lower N-MOSFET, therefore the HS voltage will generally not exceed –1 V. However in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage transiently. If negative transients occur on HS, the HS voltage must never be more negative than VDD - 15 V. For example, if VDD = 10 V, the negative transients at HS must not exceed –5 V.
20175903.gifFigure 1. LM5106 Input - Output Waveforms
20175904.gifFigure 2. LM5106 Switching Time Definitions: tLPLH, tLPHL, tHPLH, tHPHL
20175931.gifFigure 3. LM5106 Dead-time: DT

6.7 Typical Characteristics

20175910.gifFigure 4. VDD Operating Current vs Frequency
20175912.gifFigure 6. Quiescent Current vs Supply Voltage
20175916.gifFigure 8. HB Operating Current vs Frequency
20175919.gifFigure 10. Undervoltage Rising Threshold vs Temperature
20175921.gifFigure 12. LO and HO - Low-Level Output Voltage vs Temperature
20175922.gifFigure 14. Input Threshold vs Temperature
20175927.gifFigure 16. Dead-Time vs Temperature (RT = 100k)
20175911.gifFigure 5. Operating Current vs Temperature
20175913.gifFigure 7. Quiescent Current vs Temperature
20175917.gifFigure 9. HO and LO Peak Output Current vs Output Voltage
20175918.gifFigure 11. Undervoltage Hysteresis vs Temperature
20175920.gifFigure 13. LO and HO - High-Level Output Voltage vs Temperature
20175926.gifFigure 15. Dead-Time vs Temperature (RT = 10k)