ZHCSM35F January   2007  – May 2021 LM5002

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 High Voltage VCC Regulator
      2. 7.3.2 Oscillator
      3. 7.3.3 External Synchronization
      4. 7.3.4 Enable and Standby
      5. 7.3.5 Error Amplifier and PWM Comparator
      6. 7.3.6 Current Amplifier and Slope Compensation
      7. 7.3.7 Power MOSFET
    4. 7.4 Device Functional Modes
      1. 7.4.1 Thermal Protection
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 VIN
      2. 8.1.2 SW PIN
      3. 8.1.3 EN or UVLO Voltage Divider Selection
      4. 8.1.4 Soft Start
    2. 8.2 Typical Applications
      1. 8.2.1 Non-Isolated Flyback Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Switching Frequency
          2. 8.2.1.2.2 Flyback Transformer
          3. 8.2.1.2.3 Peak MOSFET Current
          4. 8.2.1.2.4 Output Capacitance
          5. 8.2.1.2.5 Output Diode Rating
          6. 8.2.1.2.6 Power Stage Analysis
          7. 8.2.1.2.7 Loop Compensation
      2. 8.2.2 Isolated Flyback Regulator
        1. 8.2.2.1 Design Requirements
      3. 8.2.3 Boost Regulator
        1. 8.2.3.1 Design Requirements
      4. 8.2.4 24-V SEPIC Regulator
        1. 8.2.4.1 Design Requirements
      5. 8.2.5 12-V Automotive SEPIC Regulator
        1. 8.2.5.1 Design Requirements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 接收文档更新通知
    2. 11.2 支持资源
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

External Synchronization

The LM5002 can be synchronized to the rising edge of an external clock. The external clock must have a higher frequency than the free running oscillator frequency set by the RT resistor. The clock signal must be coupled through a 100-pF capacitor into the RT pin. A peak voltage level greater than 2.6 V at the RT pin is required for detection of the sync pulse. The DC voltage across the RT resistor is internally regulated at 1.5 V. The negative portion of the AC voltage of the synchronizing clock is clamped to this 1.5 V by an amplifier inside the LM5002 with approximately 100-Ω output impedance. Therefore, the AC pulse superimposed on the RT resistor must have positive pulse amplitude of 1.1 V or greater to successfully synchronize the oscillator. The sync pulse width measured at the RT pin must have a duration greater than 15 ns and less than 5% of the switching period. The sync pulse rising edge initiates the internal CLK signal rising edge, which turns off the power MOSFET. The RT resistor is always required, whether the oscillator is free running or externally synchronized. Place the RT resistor very close to the device and connected directly to the RT and GND pins of the LM5002.