ZHCSBI0C March   2013  – October 2014 LM3279

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 System Characteristics Recommended Capacitance Specifications
    8. 6.8 Typical Performance Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Dynamically Adjustable Output Voltage
      2. 7.3.2  Seamless Mode Transition
      3. 7.3.3  Setting The Output Voltage
      4. 7.3.4  General Purpose Outputs
      5. 7.3.5  VCONON
      6. 7.3.6  RDSON Management
      7. 7.3.7  Supply Current Limit
      8. 7.3.8  Reverse Current Limit
      9. 7.3.9  VCON Overvoltage Clamp
      10. 7.3.10 Thermal Overload Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable And Shutdown Mode
      2. 7.4.2 Low-Power Mode
      3. 7.4.3 Standby Mode
      4. 7.4.4 PFM Mode
    5. 7.5 Programming
      1. 7.5.1 Digital Control Serial Bus Interface
      2. 7.5.2 Supported Command Sequences
      3. 7.5.3 Device Enumeration
      4. 7.5.4 I/O
      5. 7.5.5 Control Interface Timing Parameters
    6. 7.6 Registers
      1. 7.6.1 Programmable Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application Circuit: Digital Control
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Output Current Capability
          2. 8.2.1.2.2 Recommended External Components
            1. 8.2.1.2.2.1 Inductor Selection
            2. 8.2.1.2.2.2 Input Capacitor Selection
          3. 8.2.1.2.3 Output Capacitor Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Application Circuit: Analog Control
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB
        1. 10.1.1.1 Energy Efficiency
        2. 10.1.1.2 EMI
    2. 10.2 Layout Examples
      1. 10.2.1 LM3279 RF Evaluation Board
      2. 10.2.2 Component Placement
    3. 10.3 DSBGA Package Assembly And Use
    4. 10.4 Manufacturing Considerations
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 文档支持
      1. 11.2.1 相关文档 
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
PVIN, VOUT to GND −0.2 6 V
PGND to SGND, GND PGND −0.2 0.2
VIO, SDATA, SCLK, EN, VCON, GPO1/GPO0 to SGND, GND −0.2 6
FB to PGND −0.2 6
SW1, SW2 (PGND −0.2V) 6
Continuous power dissipation (3) Internally limited
Maximum operating junction temperature (TJ-MAX) 150 °C
Maximum lead temperature (soldering) See (4)
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the potential at the GND pins.
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typ.) and disengages at TJ = 125°C (typ.).
(4) For detailed soldering specifications and information, please refer to Texas Instruments Application Note 1112: DSBGA Wafer Level Chip Scale Package (SNVA009).

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –45 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 0 1000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN NOM MAX UNIT
Input voltage 2.7 5.5 V
Output voltage (digital control) 0.4 4.212
Recommended current load 0 1000 mA
Operating ambient temperature (TA)(3) –30 85 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the potential at the GND pins.
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be de-rated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

6.4 Thermal Information

THERMAL METRIC(1) DSBGA UNIT
YZR
16 PINS
RθJA Junction-to-ambient thermal resistance 70.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 14.4
RθJB Junction-to-board thermal resistance 10
ψJT Junction-to-top characterization parameter 1.7
ψJB Junction-to-board characterization parameter 10
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics(1)

Limits are for TA = TJ = 25°C, and specifications apply to the LM3279 Typical Application Circuits with: PVIN = 3.8 V, VIO or EN = 1.8 V, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB,MIN Minimum FB voltage VSET = 0Bh 0.35 0.40 0.45 V
VCON = 0.167 V 0.43 0.5 0.570
VFB,MAX Maximum FB voltage VSET = 75h 4.122 4.212 4.302
VCON = 1.4 V 4.11 4.2 4.29
IQ_PWM DC bias current in PVIN, SVIN No switching (2) FB = HIGH
Max limits = −30°C ≤ TJ = TA ≤ 85°C
1.4 2 mA
ISHDN Shutdown supply current VIO = EN = 0 V, VCON = 0 V,
SW1 = SW2 = VOUT = 0 V
Max limits = −30°C ≤ TJ = TA ≤ 85°C
0.2 2 µA
IQ STBY Standby supply current VIO = 1.8 V, VSET_CTRL = 02h,
SW1 = SW2 = VOUT = 0 V
1.2 mA
ILIM_L Input current limit (large) Open Loop (3) VCON = 1.2 V 1500 1700 mA
ILIM_S Input current limit (small) Open Loop (3) VCON = 0.2 V 700 850
ƒOSC_PWM Internal oscillator frequency PWM
Min and Max limits = −30°C ≤ TJ = TA ≤ 85°C
2.1 2.4 2.7 MHz
fSCLK SCLK clock frequency 0.032 26
IVIO-IN VIO voltage average input current VIO = 1.8 V, Average during 26-MHz write 1.25 mA
IIL ISDATA VIN = 0.2*VIO −2 1 µA
ISCLK −1 1
IIH ISDATA VIN = 0.8*VIO −2 10
ISCLK −1 10
VIH Input high-level threshold EN, GPO0, GPO1 Min and Max limits = −30°C ≤ TJ = TA ≤ 85°C 1.2 V
VIL Input low-level threshold EN, GPO0, GPO1 0.6
VIH-SDATA, SCLK Input high-level threshold SDATA, SCLK 0.4*VIO 0.7*VIO V
VIL-SDATA, SCLK Input low-level threshold SDATA, SCLK 0.3*VIO 0.6*VIO
VOH-SDATA Output high-level threshold SDATA ISDATA = −2 mA 0.8*VIO VIO + 0.01
VOL-SDATA Output low-level threshold SDATA ISDATA = 2 mA 0.2*VIO
VOH-GPO Output high-level threshold GPO IOUT = ±200 µA VIO−0.15V VIO+0.1V
VOL-GPO Output low-level threshold GPO IOUT = ±200 µA −0.4 0.3 V
VSET-LSB Output voltage LSB VSET_CTRL = 40h to 41h 36 mV
IEN EN pin pulldown current VIO = 0 V 5 10 µA
Gain Internal gain (4) 0.167 V ≤ VCON ≤ 1.4 V 3 V/V
ICON VCON pin input leakage EN = 3.8 V –1 1 µA
IOUT_LEAKAGE Leakage into VOUT pin of the buck-boost EN = 0, VOUT ≤ 4.2 V, VBATT ≤ 5.5 V
Max limits = −30°C ≤ TJ = TA ≤ 85°C
5
(1) Min and Max limits are specified by design, test, or statistical analysis.
(2) IQ specified here is when the part is not switching.
(3) The parameters in the electrical characteristics table are tested under open loop conditions at PVIN = 3.8 V. For performance over the input voltage range and closed loop results refer to the datasheet curves.
(4) When using analog control (EN = HIGH) to calculate VOUT, use the following equation: VOUT = VCON × 3.

6.6 System Characteristics

The following spec table entries are specified by design and verifications, providing the component values in the typical application circuits are used: L = 1.5 µH, DFE201610C-1R5M (2016)/TOKO; CIN and COUT each = 10 µF 6.3 V, C105A106MQ5NUNC (0402)/Samsung; PA decoupling cap emulation = 0.47 µF, GRM033R60J474ME90 (0201)/Murata. These parameters are not verified by production testing. Typical limits are TA = 25°C. Min and Max limits apply over the full ambient temperature range (−30°C ≤ TA ≤ 85°C) and over the VIN range = 2.7 V to 5.5 V, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TON Turn-on time (time for output to reach 0V→90% × 3.4 V) VBATT = 3.8 V, VIO = 1.8 V, RFFE write VSET = 3.42 V (VSET_CTRL = 5Fh), IOUT = 0mA 35 50 µs
EN = L to H, VBATT = 3.8 V, VCON = 1.14 V,
IOUT = 0 mA
IOUT_MAX Max output current VBATT ≥ 3 V, VOUT = 3.8 V 750 mA
VBATT ≥ 3.2 V, VOUT = 4.2 V 650
DMAX Maximum duty cycle Boost (% M4 on) 50%
Buck (% M1 on) 100%
FOSC_PFM Internal oscillator frequency PFM: VOUT = 0.6V, PVIN = 3.7 V
IOUT = 13 mA
63 kHz
CL Load capacitance Half speed readback SCLK = 13 MHz, not including LM3279 capacitance.
TA = 25°C
10 50 pF
CVCON VCON input capacitance VCON = 1V, Test frequency = 100 kHz, TA = 25°C 10 pF
VCON_LIN VCON linearity 0.167 V ≤ VCON ≤ 1.4 V –2.5% 2.5%
VIO VIO I/O voltage level 1.8V Bus, TA = 25°C 1.65 1.8 1.95 V
VO_RIPPLE Ripple voltage VBATT ≥ 3.2 V, 0.6 ≤ VOUT ≤ 4.2 V,
0 mA ≤ IOUT ≤ 430 mA, TA = 25°C
15 50 mV
PFM ripple VOUT = 0.6 V, IOUT = 5mA 40
Ripple voltage in mode transition VBATT = 3 V to 5 V, Tr = Tf = 30s
3.3 V ≤ VOUT ≤ 4.2 V
50
ΔVOUT Line regulation VBATT = 3.2 V to 4.9 V, VOUT = 3.5 V,
PWM Operation
10 mV
Load regulation IOUT = 0 mA to 500 mA, VBATT = 3.2 V to 4.9 V,
PWM Operation
20
Line_tr Line transient response VBATT = 3.6 V to 4.2 V, Tr = Tf = 10 µs,
VOUT = 3.5 V, RLOAD = 11.4 Ω, PWM
–100 100 mV
VBATT = 3.6 V to 4.2 V, Tr = Tf = 10 µs,
VOUT = 0.8 V, RLOAD = 20 Ω, PFM
–5 5
Load_tr Load transient response IOUT = 1 mA to 200 mA, Tr = Tf = 1 µs,
VBATT = 4.2 V, VOUT = 3.5 V, PWM
–100 100 mV
IOUT = 10 mA to 90 mA, Tr = Tf = 1 µs,
VBATT = 4.2 V, VOUT = 0.8 V, PFM
–10 10
VOUT_TR VOUT transient response overshoot VBATT = 3.2 V to 4.2 V,
VOUT = 1.6 V to 3.4 V, Tr = Tf = 1 µs,
RLOAD = 5 Ω
200 mV
VOUT transient response rise time 20 µs
VOUT transient response fall time 50
η Efficiency VBATT = 3 V, VOUT = 1.9 V,
IOUT = 20 mA (PWM)
77%
VBATT = 3 V, VOUT = 2.41 V,
IOUT = 60 mA (PWM)
91%
VBATT = 3 V, VOUT = 2.71 V,
IOUT = 200 mA (PWM)
94%
VBATT = 3 V, VOUT = 3.31 V,
IOUT = 480 mA (PWM)
93%
VBATT = 3.8 V, VOUT = 0.60 V,
IOUT = 10 mA (PFM)
57%
VBATT = 3.8 V, VOUT = 1 V,
IOUT = 20 mA (PFM)
75%
VBATT = 3.8 V, VOUT = 1.9 V,
IOUT = 20 mA (PWM)
68%
VBATT = 3.8 V, VOUT = 2.41 V,
IOUT = 70 mA (PWM)
88%
VBATT = 3.8 V, VOUT = 2.71 V,
IOUT = 200 mA (PWM)
94%
VBATT = 3.8 V, VOUT = 3.31 V,
IOUT = 480 mA (PWM)
94%
VBATT = 3 V, VOUT = 3.6 V,
IOUT = 200 mA (PWM)
94%
TS Data setup time TA = 25°C 1 ns
TH Data hold time 5
TSDATAOTR SDATA output transition time (rise/fall time) VIO range = 1.65 V to 1.95 V, TA = 25°C 2.1 6.5

6.7 System Characteristics Recommended Capacitance Specifications

BUS MIN (µF) TYP (µF) MAX (µF)
VBATT 4.7 10
VOUT 3.0 13
LM3279 30173314.gif Figure 1. Cold Power-Up
LM3279 30173315.gif Figure 2. Standby To Active

6.8 Typical Performance Characteristics

(PVIN = EN = 3.6 V and TA = 25°C, unless otherwise noted)
LM3279 30173219.gif
VCON = VOUT = SW1 = SW2 = EN = 0 V
Figure 3. Shutdown Current vs Temperature
LM3279 30173221.gif
VOUT = 1 V
Figure 5. PFM Efficiency
LM3279 30173225.gif
VOUT = 2.4 V
Figure 7. PWM Efficiency
LM3279 30173216.gif
VOUT = 3.5 V IOUT = 300 mA
Figure 4. Switching Frequency vs Temperature
LM3279 30173222.gif
VOUT = 1.4 V
Figure 6. PFM Efficiency
LM3279 30173226.gif
VOUT = 3.6 V
Figure 8. PWM Efficiency
LM3279 VoutvsVcon_plot.png
No Load, RFFE Digital Control Mode
Figure 9. VSET_CTRL Voltage vs Output Voltage
LM3279 Efficiency_Vout2.5V.png
VOUT = 2.5 V
Figure 11. Auto Efficiency Mode
LM3279 Vout_Transient_noi209.gif
VOUT = 0.8 ↔ 2 V PVIN = 3.8 V RLOAD = 20 Ω
Figure 13. VOUT Transient
LM3279 Efficiency_Vout1.5V.png
VOUT = 1.5 V
Figure 10. Auto Efficiency Mode
LM3279 Efficiency_Vout_3.4V.png
VOUT = 3.4 V
Figure 12. Auto Efficiency Mode
LM3279 boost_mode_noi209.gif
VOUT = 3.45 V PVIN = 3.37 V LOAD = 500 mA
Figure 14. Boost Mode Operation
LM3279 buck_boost_noi209.gif
VOUT = 3.6 V PVIN = 3.8 V LOAD = 600 mA
Figure 15. Buck-Boost Operation
LM3279 30173212.gif
VOUT = 3 V PVIN Step = 3.6 V ↔ 4.2 V LOAD = 3200 mA
Figure 17. Line Transient For DC/DC
LM3279 startup_noi209.gif
VOUT = 3.45 V PVIN = 3.6 V LOAD = 350 mA
Figure 16. Start-Up
LM3279 standby_to_active_noi209.gif
VOUT = 3.5 V PVIN = 4.2 V VIO = 1.8 V
VSET_CTRL = 0x5F
Figure 18. Standby-To-Active Mode